scholarly journals Effects of semantic relatedness on recall of stimuli preceding emotional oddballs

2008 ◽  
Vol 14 (4) ◽  
pp. 620-628 ◽  
Author(s):  
RYAN M. SMITH ◽  
DAVID Q. BEVERSDORF

Semantic and episodic memory networks function as highly interconnected systems, both relying on the hippocampal/medial temporal lobe complex (HC/MTL). Episodic memory encoding triggers the retrieval of semantic information, serving to incorporate contextual relationships between the newly acquired memory and existing semantic representations. While emotional material augments episodic memory encoding at the time of stimulus presentation, interactions between emotion and semantic memory that contribute to subsequent episodic recall are not well understood. Using a modified oddball task, we examined the modulatory effects of negative emotion on semantic interactions with episodic memory by measuring the free-recall of serially presented neutral or negative words varying in semantic relatedness. We found increased free-recall for words related to and preceding emotionally negative oddballs, suggesting that negative emotion can indirectly facilitate episodic free-recall by enhancing semantic contributions during encoding. Our findings demonstrate the ability of emotion and semantic memory to interact to mutually enhance free-recall. (JINS, 2008, 14, 620–628.)

2012 ◽  
Vol 4 (3) ◽  
pp. 73
Author(s):  
David De Noreña ◽  
Irene De la Vega Rodríguez

Frontal cortex is involved in important memory processes but its role is different from that associated with structures in the medial temporal lobe and diencephalon. While damage in the latter structures produces profound and global anterograde amnesia, damage to the frontal cortex is manifested by an specific group of memory impairments and distortions like confabulations, source amnesia, prospective memory and metamemory deficit, or impaired free recall. Frontal lobes is less involved in memory acquisition per se than it is in leading the strategic processes that support memory encoding, retrieval and monitoring.


2009 ◽  
Vol 15 (4) ◽  
pp. 536-546 ◽  
Author(s):  
PABLO CAMPO ◽  
FERNANDO MAESTÚ ◽  
IRENE GARCÍA-MORALES ◽  
ANTONIO GIL-NAGEL ◽  
BRYAN STRANGE ◽  
...  

AbstractIt has been traditionally assumed that medial temporal lobe (MTL) is not required for working memory (WM). However, animal lesion and electrophysiological studies and human neuropsychological and neuroimaging studies have provided increasing evidences of a critical involvement of MTL in WM. Based on previous findings, the central aim of this study was to investigate the contribution of the MTL to verbal WM encoding. Here, we used magnetoencephalography (MEG) to compare the patterns of MTL activation of 9 epilepsy patients suffering from left hippocampal sclerosis with those of 10 healthy matched controls while they performed a verbal WM task. MEG recordings allow detailed tracking of the time course of MTL activation. We observed impaired WM performance associated with changes in the dynamics of MTL activity in epilepsy patients. Specifically, whereas patients showed decreased activity in damaged MTL, activity in the contralateral MTL was enhanced, an effect that became significant in the 600- to 700-ms interval after stimulus presentation. These findings strongly support the crucial contribution of MTL to verbal WM encoding and provide compelling evidence for the proposal that MTL contributes to both episodic memory and WM. Whether this pattern is signaling reorganization or a normal use of a damaged structure is discussed. (JINS, 2009, 15, 536–546.)


2020 ◽  
Vol 14 ◽  
Author(s):  
Giorgia Committeri ◽  
Agustina Fragueiro ◽  
Maria Maddalena Campanile ◽  
Marco Lagatta ◽  
Ford Burles ◽  
...  

The medial temporal lobe supports both navigation and declarative memory. On this basis, a theory of phylogenetic continuity has been proposed according to which episodic and semantic memories have evolved from egocentric (e.g., path integration) and allocentric (e.g., map-based) navigation in the physical world, respectively. Here, we explored the behavioral significance of this neurophysiological model by investigating the relationship between the performance of healthy individuals on a path integration and an episodic memory task. We investigated the path integration performance through a proprioceptive Triangle Completion Task and assessed episodic memory through a picture recognition task. We evaluated the specificity of the association between performance in these two tasks by including in the study design a verbal semantic memory task. We also controlled for the effect of attention and working memory and tested the robustness of the results by including alternative versions of the path integration and semantic memory tasks. We found a significant positive correlation between the performance on the path integration the episodic, but not semantic, memory tasks. This pattern of correlation was not explained by general cognitive abilities and persisted also when considering a visual path integration task and a non-verbal semantic memory task. Importantly, a cross-validation analysis showed that participants' egocentric navigation abilities reliably predicted episodic memory performance. Altogether, our findings support the hypothesis of a phylogenetic continuity between egocentric navigation and episodic memory and pave the way for future research on the potential causal role of egocentric navigation on multiple forms of episodic memory.


2005 ◽  
Vol 187 (6) ◽  
pp. 500-509 ◽  
Author(s):  
Amélie M. Achim ◽  
Martin Lepage

BackgroundNumerous studies have examined the neural correlates of episodic memory deficits in schizophrenia, yielding both consistencies and discrepancies in the reported patterns of results.AimsTo identify in schizophrenia the brain regions in which activity is consistently abnormal across imaging studies of memory.MethodData from 18 studies meeting the inclusion criteria were combined using a recently developed quantitative meta-analytic approach.ResultsRegions of consistent differential activation between groups were observed in the left inferior prefrontal cortex, medial temporal cortex bilaterally, left cerebellum, and in other prefrontal and temporal lobe regions. Subsequent analyses explored memory encoding and retrieval separately and identified between-group differences in specific prefrontal and medial temporal lobe regions.ConclusionsBeneath the apparent heterogeneity of published findings on schizophrenia and memory, a consistent and robust pattern of group differences is observed as a function of memory processes.


2000 ◽  
Vol 12 (1) ◽  
pp. 1-47 ◽  
Author(s):  
Roberto Cabeza ◽  
Lars Nyberg

Positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) have been extensively used to explore the functional neuroanatomy of cognitive functions. Here we review 275 PET and fMRI studies of attention (sustained, selective, Stroop, orientation, divided), perception (object, face, space/motion, smell), imagery (object, space/ motion), language (written/spoken word recognition, spoken/ no spoken response), working memory (verbal/numeric, object, spatial, problem solving), semantic memory retrieval (categorization, generation), episodic memory encoding (verbal, object, spatial), episodic memory retrieval (verbal, nonverbal, success, effort, mode, context), priming (perceptual, conceptual), and procedural memory (conditioning, motor, and nonmotor skill learning). To identify consistent activation patterns associated with these cognitive operations, data from 412 contrasts were summarized at the level of cortical Brodmann's areas, insula, thalamus, medial-temporal lobe (including hippocampus), basal ganglia, and cerebellum. For perception and imagery, activation patterns included primary and secondary regions in the dorsal and ventral pathways. For attention and working memory, activations were usually found in prefrontal and parietal regions. For language and semantic memory retrieval, typical regions included left prefrontal and temporal regions. For episodic memory encoding, consistently activated regions included left prefrontal and medial-temporal regions. For episodic memory retrieval, activation patterns included prefrontal, medial-temporal, and posterior midline regions. For priming, deactivations in prefrontal (conceptual) or extrastriate (perceptual) regions were consistently seen. For procedural memory, activations were found in motor as well as in non-motor brain areas. Analysis of regional activations across cognitive domains suggested that several brain regions, including the cerebellum, are engaged by a variety of cognitive challenges. These observations are discussed in relation to functional specialization as well as functional integration.


Science ◽  
2020 ◽  
Vol 367 (6482) ◽  
pp. 1131-1134 ◽  
Author(s):  
Alex P. Vaz ◽  
John H. Wittig ◽  
Sara K. Inati ◽  
Kareem A. Zaghloul

Episodic memory retrieval is thought to rely on the replay of past experiences, yet it remains unknown how human single-unit activity is temporally organized during episodic memory encoding and retrieval. We found that ripple oscillations in the human cortex reflect underlying bursts of single-unit spiking activity that are organized into memory-specific sequences. Spiking sequences occurred repeatedly during memory formation and were replayed during successful memory retrieval, and this replay was associated with ripples in the medial temporal lobe. Together, these data demonstrate that human episodic memory is encoded by specific sequences of neural activity and that memory recall involves reinstating this temporal order of activity.


2008 ◽  
Vol 20 (8) ◽  
pp. 1490-1506 ◽  
Author(s):  
R. Shayna Rosenbaum ◽  
Morris Moscovitch ◽  
Jonathan K. Foster ◽  
David M. Schnyer ◽  
Fuqiang Gao ◽  
...  

The issue of whether the hippocampus and related structures in the medial-temporal lobe (MTL) play a temporary or permanent role in autobiographical episodic memory remains unresolved. One long-standing belief is that autobiographical memory (AM), like semantic memory, is initially dependent on the MTL but ultimately can be retained and recovered independently of it. However, evidence that hippocampal amnesia results in severe loss of episodic memory for a lifetime of personally experienced events suggests otherwise. To test the opposing views, we conducted detailed investigations of autobiographical episodic memory in people with amnesia resulting from MTL lesions of varying extent. By combining precise quantification of MTL and neocortical volumes with sensitive measures of recollection of one's personal past, we show that the severity of episodic, but not semantic, AM loss is best accounted for by the degree of hippocampal damage and less likely related to additional neocortical compromise.


2019 ◽  
Vol 131 (3) ◽  
pp. 790-798 ◽  
Author(s):  
Woorim Jeong ◽  
Hyeongrae Lee ◽  
June Sic Kim ◽  
Chun Kee Chung

OBJECTIVEHow the brain supports intermediate-term preservation of memory in patients who have undergone unilateral medial temporal lobe resection (MTLR) has not yet been demonstrated. To understand the neural basis of episodic memory in the intermediate term after surgery for temporal lobe epilepsy (TLE), the authors investigated the relationship between the activation of the hippocampus (HIP) during successful memory encoding and individual memory capacity in patients who had undergone MTLR. They also compared hippocampal activation with other parameters, including structural volumes of the HIP, duration of illness, and age at seizure onset.METHODSThirty-five adult patients who had undergone unilateral MTLR at least 1 year before recruiting and who had a favorable seizure outcome were enrolled (17 left MTLR, 18 right MTLR; mean follow-up 6.31 ± 2.72 years). All patients underwent a standardized neuropsychological examination of memory function and functional MRI scanning with a memory-encoding paradigm of words and figures. Activations of the HIP during successful memory encoding were calculated and compared with standard neuropsychological memory scores, hippocampal volumes, and other clinical variables.RESULTSGreater activation in the HIP contralateral to the side of the resection was related to higher postoperative memory scores and greater postoperative memory improvement than the preoperative baseline in both patient groups. Specifically, postoperative verbal memory performance was positively correlated with contralateral right hippocampal activation during word encoding in the left-sided surgery group. In contrast, postoperative visual memory performance was positively correlated with contralateral left hippocampal activation during figure encoding in the right-sided surgery group. Activation of the ipsilateral remnant HIP was not correlated with any memory scores or volumes of the HIP; however, it had a negative correlation with the seizure-onset age and positive correlation with the duration of illness in both patient groups.CONCLUSIONSFor the first time, a neural basis that supports effective intermediate-term episodic memory after unilateral MTLR has been characterized. The results provide evidence that engagement of the HIP contralateral rather than ipsilateral to the side of resection is responsible for effective memory function in the intermediate term (> 1 year) after surgery in patients who have undergone left MTLR and right MTLR. Engagement of the material-specific contralesional HIP, verbal memory in the left-sided surgery group, and visual memory in the right-sided surgery group were observed.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 331 ◽  
Author(s):  
Richard J. Allen

Neurological amnesia has been and remains the focus of intense study, motivated by the drive to understand typical and atypical memory function and the underlying brain basis that is involved. There is now a consensus that amnesia associated with hippocampal (and, in many cases, broader medial temporal lobe) damage results in deficits in episodic memory, delayed recall, and recollective experience. However, debate continues regarding the patterns of preservation and impairment across a range of abilities, including semantic memory and learning, delayed recognition, working memory, and imagination. This brief review highlights some of the influential and recent advances in these debates and what they may tell us about the amnesic condition and hippocampal function.


Sign in / Sign up

Export Citation Format

Share Document