scholarly journals Episodic memory-related activation in schizophrenia: meta-analysis

2005 ◽  
Vol 187 (6) ◽  
pp. 500-509 ◽  
Author(s):  
Amélie M. Achim ◽  
Martin Lepage

BackgroundNumerous studies have examined the neural correlates of episodic memory deficits in schizophrenia, yielding both consistencies and discrepancies in the reported patterns of results.AimsTo identify in schizophrenia the brain regions in which activity is consistently abnormal across imaging studies of memory.MethodData from 18 studies meeting the inclusion criteria were combined using a recently developed quantitative meta-analytic approach.ResultsRegions of consistent differential activation between groups were observed in the left inferior prefrontal cortex, medial temporal cortex bilaterally, left cerebellum, and in other prefrontal and temporal lobe regions. Subsequent analyses explored memory encoding and retrieval separately and identified between-group differences in specific prefrontal and medial temporal lobe regions.ConclusionsBeneath the apparent heterogeneity of published findings on schizophrenia and memory, a consistent and robust pattern of group differences is observed as a function of memory processes.

2021 ◽  
Vol 12 ◽  
Author(s):  
João Castelhano ◽  
Gisela Lima ◽  
Marta Teixeira ◽  
Carla Soares ◽  
Marta Pais ◽  
...  

There is an increasing interest in the neural effects of psychoactive drugs, in particular tryptamine psychedelics, which has been incremented by the proposal that they have potential therapeutic benefits, based on their molecular mimicry of serotonin. It is widely believed that they act mainly through 5HT2A receptors but their effects on neural activation of distinct brain systems are not fully understood. We performed a quantitative meta-analysis of brain imaging studies to investigate the effects of substances within this class (e.g., LSD, Psilocybin, DMT, Ayahuasca) in the brain from a molecular and functional point of view. We investigated the question whether the changes in activation patterns and connectivity map into regions with larger 5HT1A/5HT2A receptor binding, as expected from indolaemine hallucinogens (in spite of the often reported emphasis only on 5HT2AR). We did indeed find that regions with changed connectivity and/or activation patterns match regions with high density of 5HT2A receptors, namely visual BA19, visual fusiform regions in BA37, dorsal anterior and posterior cingulate cortex, medial prefrontal cortex, and regions involved in theory of mind such as the surpramarginal gyrus, and temporal cortex (rich in 5HT1A receptors). However, we also found relevant patterns in other brain regions such as dorsolateral prefrontal cortex. Moreover, many of the above-mentioned regions also have a significant density of both 5HT1A/5HT2A receptors, and available PET studies on the effects of psychedelics on receptor occupancy are still quite scarce, precluding a metanalytic approach. Finally, we found a robust neuromodulatory effect in the right amygdala. In sum, the available evidence points towards strong neuromodulatory effects of tryptamine psychedelics in key brain regions involved in mental imagery, theory of mind and affective regulation, pointing to potential therapeutic applications of this class of substances.


2020 ◽  
Author(s):  
Ernest Mas-Herrero ◽  
Larissa Maini ◽  
Guillaume Sescousse ◽  
Robert J. Zatorre

ABSTRACTNeuroimaging studies have shown that, despite the abstractness of music, it may mimic biologically rewarding stimuli (e.g. food) in its ability to engage the brain’s reward circuity. However, due to the lack of research comparing music and other types of reward, it is unclear to what extent the recruitment of reward-related structures overlaps among domains. To achieve this goal, we performed a coordinate-based meta-analysis of 38 neuroimaging studies (703 subjects) comparing the brain responses specifically to music and food-induced pleasure. Both engaged a common set of brain regions including the ventromedial prefrontal cortex, ventral striatum, and insula. Yet, comparative analyses indicated a partial dissociation in the engagement of the reward circuitry as a function of the type of reward, as well as additional reward type-specific activations in brain regions related to perception, sensory processing, and learning. These results support the idea that hedonic reactions rely on the engagement of a common reward network, yet through specific routes of access depending on the modality and nature of the reward.


NeuroImage ◽  
2012 ◽  
Vol 63 (2) ◽  
pp. 989-997 ◽  
Author(s):  
Heiko C. Bergmann ◽  
Mark Rijpkema ◽  
Guillén Fernández ◽  
Roy P.C. Kessels

2017 ◽  
Vol 29 (3) ◽  
pp. 530-544 ◽  
Author(s):  
Hugo J. Spiers ◽  
Bradley C. Love ◽  
Mike E. Le Pelley ◽  
Charlotte E. Gibb ◽  
Robin A. Murphy

Despite advances in understanding the brain structures involved in the expression of stereotypes and prejudice, little is known about the brain structures involved in their acquisition. Here, we combined fMRI, a task involving learning the valence of different social groups, and modeling of the learning process involved in the development of biases in thinking about social groups that support prejudice. Participants read descriptions of valenced behaviors performed by members of novel social groups, with majority groups being more frequently encountered during learning than minority groups. A model-based fMRI analysis revealed that the anterior temporal lobe tracked the trial-by-trial changes in the valence associated with each group encountered in the task. Descriptions of behavior by group members that deviated from the group average (i.e., prediction errors) were associated with activity in the left lateral PFC, dorsomedial PFC, and lateral anterior temporal cortex. Minority social groups were associated with slower acquisition rates and more activity in the ventral striatum and ACC/dorsomedial PFC compared with majority groups. These findings provide new insights into the brain regions that (a) support the acquisition of prejudice and (b) detect situations in which an individual's behavior deviates from the prejudicial attitude held toward their group.


2019 ◽  
Vol 131 (3) ◽  
pp. 790-798 ◽  
Author(s):  
Woorim Jeong ◽  
Hyeongrae Lee ◽  
June Sic Kim ◽  
Chun Kee Chung

OBJECTIVEHow the brain supports intermediate-term preservation of memory in patients who have undergone unilateral medial temporal lobe resection (MTLR) has not yet been demonstrated. To understand the neural basis of episodic memory in the intermediate term after surgery for temporal lobe epilepsy (TLE), the authors investigated the relationship between the activation of the hippocampus (HIP) during successful memory encoding and individual memory capacity in patients who had undergone MTLR. They also compared hippocampal activation with other parameters, including structural volumes of the HIP, duration of illness, and age at seizure onset.METHODSThirty-five adult patients who had undergone unilateral MTLR at least 1 year before recruiting and who had a favorable seizure outcome were enrolled (17 left MTLR, 18 right MTLR; mean follow-up 6.31 ± 2.72 years). All patients underwent a standardized neuropsychological examination of memory function and functional MRI scanning with a memory-encoding paradigm of words and figures. Activations of the HIP during successful memory encoding were calculated and compared with standard neuropsychological memory scores, hippocampal volumes, and other clinical variables.RESULTSGreater activation in the HIP contralateral to the side of the resection was related to higher postoperative memory scores and greater postoperative memory improvement than the preoperative baseline in both patient groups. Specifically, postoperative verbal memory performance was positively correlated with contralateral right hippocampal activation during word encoding in the left-sided surgery group. In contrast, postoperative visual memory performance was positively correlated with contralateral left hippocampal activation during figure encoding in the right-sided surgery group. Activation of the ipsilateral remnant HIP was not correlated with any memory scores or volumes of the HIP; however, it had a negative correlation with the seizure-onset age and positive correlation with the duration of illness in both patient groups.CONCLUSIONSFor the first time, a neural basis that supports effective intermediate-term episodic memory after unilateral MTLR has been characterized. The results provide evidence that engagement of the HIP contralateral rather than ipsilateral to the side of resection is responsible for effective memory function in the intermediate term (> 1 year) after surgery in patients who have undergone left MTLR and right MTLR. Engagement of the material-specific contralesional HIP, verbal memory in the left-sided surgery group, and visual memory in the right-sided surgery group were observed.


NeuroImage ◽  
1996 ◽  
Vol 3 (3) ◽  
pp. S530 ◽  
Author(s):  
J.R. Binder ◽  
P.S. Bellgowan ◽  
J.A. Frost ◽  
T.A. Hammeke ◽  
J.A. Springer ◽  
...  

2020 ◽  
Author(s):  
Susan L. Benear ◽  
Elizabeth A. Horwath ◽  
Emily Cowan ◽  
M. Catalina Camacho ◽  
Chi Ngo ◽  
...  

The medial temporal lobe (MTL) undergoes critical developmental change throughout childhood, which aligns with developmental changes in episodic memory. We used representational similarity analysis to compare neural pattern similarity for children and adults in hippocampus and parahippocampal cortex during naturalistic viewing of clips from the same movie or different movies. Some movies were more familiar to participants than others. Neural pattern similarity was generally lower for clips from the same movie, indicating that related content taxes pattern separation-like processes. However, children showed this effect only for movies with which they were familiar, whereas adults showed the effect consistently. These data suggest that children need more exposures to stimuli in order to show mature pattern separation processes.


2021 ◽  
pp. 1-11
Author(s):  
Francesca Biondo ◽  
Charlotte Nymberg Thunell ◽  
Bing Xu ◽  
Congying Chu ◽  
Tianye Jia ◽  
...  

Abstract Background Sex-related differences in psychopathology are known phenomena, with externalizing and internalizing symptoms typically more common in boys and girls, respectively. However, the neural correlates of these sex-by-psychopathology interactions are underinvestigated, particularly in adolescence. Methods Participants were 14 years of age and part of the IMAGEN study, a large (N = 1526) community-based sample. To test for sex-by-psychopathology interactions in structural grey matter volume (GMV), we used whole-brain, voxel-wise neuroimaging analyses based on robust non-parametric methods. Psychopathological symptom data were derived from the Strengths and Difficulties Questionnaire (SDQ). Results We found a sex-by-hyperactivity/inattention interaction in four brain clusters: right temporoparietal-opercular region (p < 0.01, Cohen's d = −0.24), bilateral anterior and mid-cingulum (p < 0.05, Cohen's d = −0.18), right cerebellum and fusiform (p < 0.05, Cohen's d = −0.20) and left frontal superior and middle gyri (p < 0.05, Cohen's d = −0.26). Higher symptoms of hyperactivity/inattention were associated with lower GMV in all four brain clusters in boys, and with higher GMV in the temporoparietal-opercular and cerebellar-fusiform clusters in girls. Conclusions Using a large, sex-balanced and community-based sample, our study lends support to the idea that externalizing symptoms of hyperactivity/inattention may be associated with different neural structures in male and female adolescents. The brain regions we report have been associated with a myriad of important cognitive functions, in particular, attention, cognitive and motor control, and timing, that are potentially relevant to understand the behavioural manifestations of hyperactive and inattentive symptoms. This study highlights the importance of considering sex in our efforts to uncover mechanisms underlying psychopathology during adolescence.


2015 ◽  
Vol 21 (3) ◽  
pp. 203-213 ◽  
Author(s):  
Jonathan C. Ipser ◽  
Gregory G. Brown ◽  
Amanda Bischoff-Grethe ◽  
Colm G. Connolly ◽  
Ronald J. Ellis ◽  
...  

AbstractHIV-associated cognitive impairments are prevalent, and are consistent with injury to both frontal cortical and subcortical regions of the brain. The current study aimed to assess the association of HIV infection with functional connections within the frontostriatal network, circuitry hypothesized to be highly vulnerable to HIV infection. Fifteen HIV-positive and 15 demographically matched control participants underwent 6 min of resting-state functional magnetic resonance imaging (RS-fMRI). Multivariate group comparisons of age-adjusted estimates of connectivity within the frontostriatal network were derived from BOLD data for dorsolateral prefrontal cortex (DLPFC), dorsal caudate and mediodorsal thalamic regions of interest. Whole-brain comparisons of group differences in frontostriatal connectivity were conducted, as were pairwise tests of connectivity associations with measures of global cognitive functioning and clinical and immunological characteristics (nadir and current CD4 count, duration of HIV infection, plasma HIV RNA). HIV – associated reductions in connectivity were observed between the DLPFC and the dorsal caudate, particularly in younger participants (<50 years, N=9). Seropositive participants also demonstrated reductions in dorsal caudate connectivity to frontal and parietal brain regions previously demonstrated to be functionally connected to the DLPFC. Cognitive impairment, but none of the assessed clinical/immunological variables, was also associated with reduced frontostriatal connectivity. In conclusion, our data indicate that HIV is associated with attenuated intrinsic frontostriatal connectivity. Intrinsic connectivity of this network may therefore serve as a marker of the deleterious effects of HIV infection on the brain, possibly via HIV-associated dopaminergic abnormalities. These findings warrant independent replication in larger studies. (JINS, 2015, 21, 1–11)


2010 ◽  
Vol 30 (28) ◽  
pp. 9548-9556 ◽  
Author(s):  
S. Ghetti ◽  
D. M. DeMaster ◽  
A. P. Yonelinas ◽  
S. A. Bunge

Sign in / Sign up

Export Citation Format

Share Document