Increasing Apoptosis-Related Gene Expression in Human Myocardium with Congestive Heart Failure

2000 ◽  
Vol 6 (S2) ◽  
pp. 628-629
Author(s):  
D. Xie ◽  
C. Wei

Regulation of apoptosis involves a number of genes that can be classified into broad categories. These include genes that act as effectors of apoptosis, such as p53, c-myc, bax, p21- WAF, and genes that primarily suppress apoptosis, such as Bcl-2 gene family. These genes have been reported to be responsible for the modulation of certain stress induced apoptosis and cell cycle arrest.It has also been reported that apoptosis involved in cardiovascular diseases such as myocardial infarction, reperfusion injury, left ventricular hypertrophy, and hypertension. However, the expression of apoptosis-related genes in human cardiomyocytes in normal subjects and in patients with congestive heart failure (CHF) remains unclear. Therefore, the present study was designed to determine the expression and localization of apoptosis-related genes in human heart.Five normal subjects and five end-stage CHF human ventricular cardiac tissues were obtained from cardiac transplantation. The expression of p53, p21-WAF and Bcl-2 were determined by immunohistochemical staining (IHCS).

2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
M Ruppert ◽  
Z.S Onodi ◽  
P Leszek ◽  
V.E Toth ◽  
G Koncsos ◽  
...  

Abstract Background Inflammation and cytokine release have been implicated in the pathogenesis of chronic heart failure (CHF). Of particular interest, Canakinumab, a monoclonal antibody against interleukin-1b (IL-1β), had provided benefit against cardiovascular events, suggesting that blockade of IL-1β secretion and signaling might be a promising new therapeutic target. Although, recent studies have provided evidence that inflammasome activation is the main contributor to IL-1β maturation, the role of inflammasome activation in CHF remains unknown. Objective Therefore, we aimed to assess inflammasome activation in myocardial samples from end-stage failing hearts. Methods Inflammasome activation was assessed by immunoblotting in left ventricular myocardial specimens harvested from patients with end-stage CHF. Furthermore, immunoblot measurements were also performed on translational animal models of CHF (e.g. rat models of permanent coronary artery ligation and transverse aortic constriction). Left ventricular monocyte and macrophage infiltration was detected by immunohistochemistry. To investigate the molecular background of inflammasome activation, a series of cell culture experiments were performed on AC16 human cardiomyocytes and THP-1 human monocytic cell lines. Results Out of the 4 major inflammasome sensors tested, expression of the inflammasome protein absent in melanoma 2 (AIM2) and NLR family CARD domain-containing protein 4 (NLRC4) increased in human CHF while the NLRP1 and NLRP3 (NLR family, pyrin domain containing 1 and 3) inflammasome showed no change. A similar expression pattern in AIM2 and NLRC4 was also noted in CHF animal models. Furthermore, robust infiltration of Iba1+ monocytes/macrophages was observed in human failing hearts as well as in different animal models of CHF. In vitro AIM2 inflammasome activation, as induced by transfection with double-stranded DNA [poly(deoxyadenylic-deoxythymidylic)] was reduced significantly by the pharmacological blockade of pannexin-1 channels. Conclusions AIM2 and NLRC4 inflammasome activation might contribute to chronic inflammation in CHF. Our findings suggest that pannexin-1 channels might be a promising novel target to reduce inflammasome activation. Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): NVKP_16-1-2016-0017


2000 ◽  
Vol 6 (S2) ◽  
pp. 612-613
Author(s):  
S. Ren ◽  
C. Wei

Transforming growth factor-beta (TGF-β) is a growth-regulating peptide that has been shown to enhance collagen production both in vivo and in vitro. The previous studies demonstrated that TGF-β 1 is present in the normal animal myocardium. However, the expression and localization of TGF-β 1 and TGF-P receptor in human myocardium remain unclear. Therefore, the present study was designed to determine the TGF-β 1 and its receptor in human myocardium in normal subjects and in patients with end-stage congestive heart failure (CHF).Human ventricular tissues were obtained from five normal subjects and five patients with end-stage CHF during cardiac transplantation. TGF-β 1 and TGF-beta type I receptor (TGF-βRI) were determined by immunohistochemical staining (IHCS). The results of IHCS was evaluated by staining density scores (0, no staining; 1, minimal staining; 2, mild staining; 3, moderate staining; and 4, strong staining). The positive staining area (+%) in entire section was also determined.


2000 ◽  
Vol 6 (S2) ◽  
pp. 596-597
Author(s):  
C. Wei ◽  
J. S. McLaughlin

Recent study demonstrated that decrease signal transducer and activator of transcription-3 (STAT3) phosphorylation and increase apoptosis might be a critical point in the transition between compensatory cardiac hypertrophy and heart failure. To date, the protein expression of STAT3 in normal and failing human heart remains unclear. Therefore, the current study was designed to investigate the protein expression of STAT3 in human myocardium with end-stage congestive heart failure (CHF) and compared with that in normal human cardiac tissue.Human cardiac atrial tissue was obtained from normal subjects (n=5) and end-stage CHF patients (n=5) during cardiac transplantation. To detect the DNA fragmentation, in situ terminal deoxymucleotidyl transferase dUTP nick end labeling (TUNEL) was performed. An average of 1000 nuclei was analyzed for TUNEL study. STAT3 protein expression and phosphorylation of STAT3 were determined by immunohistochemical staining (IHCS) with total STAT3 and phospho-specific STAT3 antibodies.


2017 ◽  
Vol 23 (8) ◽  
pp. S48
Author(s):  
Hilda M. Gonzalez-Bonilla ◽  
Antonio Duran ◽  
Stephanie C. Fuentes Rojas ◽  
Javier Amione-Guerra ◽  
Barry Trachtenberg ◽  
...  

2002 ◽  
Vol 92 (3) ◽  
pp. 1058-1063 ◽  
Author(s):  
Anselm T. Bäumer ◽  
Christina Schumann ◽  
Bodo Cremers ◽  
Gabi Itter ◽  
Wolfgang Linz ◽  
...  

The expression of adrenomedullin (AM) and atrial natriuretic factor (ANF) were investigated in the myocardium of a rat model of chronic ischemic heart failure (CHF) compared with sham-operated controls. In addition, human myocardium of patients with end-stage heart failure due to idiopathic dilated cardiomyopathy compared with myocardium of normal subjects (NF) was studied. In CHF, similar AM levels but increased ANF expression were observed in left ventricular myocardium, as assessed by semiquantitative PCR. Functional experiments with freshly excised papillary muscles showed no influence of AM on myocardial contractility. In NF human myocardium, the expression of AM mRNA was threefold higher in atrial compared with ventricular tissue. In analogy, ANF mRNA was increased by ∼15-fold in atrial tissue. In dilated cardiomyopathy, the expression of AM was significantly increased in right and left ventricles compared with NF. In parallel, ventricular ANF expression was enhanced.


Author(s):  
Chi-Ming Wei ◽  
Margarita Bracamonte ◽  
Shi-Wen Jiang ◽  
Richard C. Daly ◽  
Christopher G.A. McGregor ◽  
...  

Nitric oxide (NO) is a potent endothelium-derived relaxing factor which also may modulate cardiomyocyte inotropism and growth via increasing cGMP. While endothelial nitric oxide synthase (eNOS) isoforms have been detected in non-human mammalian tissues, expression and localization of eNOS in the normal and failing human myocardium are poorly defined. Therefore, the present study was designed to investigate eNOS in human cardiac tissues in the presence and absence of congestive heart failure (CHF).Normal and failing atrial tissue were obtained from six cardiac donors and six end-stage heart failure patients undergoing primary cardiac transplantation. ENOS protein expression and localization was investigated utilizing Western blot analysis and immunohistochemical staining with the polyclonal rabbit antibody to eNOS (Transduction Laboratories, Lexington, Kentucky).


Sign in / Sign up

Export Citation Format

Share Document