scholarly journals The Development and Applications of Ultrafast Electron Nanocrystallography

2009 ◽  
Vol 15 (4) ◽  
pp. 323-337 ◽  
Author(s):  
Chong-Yu Ruan ◽  
Yoshie Murooka ◽  
Ramani K. Raman ◽  
Ryan A. Murdick ◽  
Richard J. Worhatch ◽  
...  

AbstractWe review the development of ultrafast electron nanocrystallography as a method for investigating structural dynamics for nanoscale materials and interfaces. Its sensitivity and resolution are demonstrated in the studies of surface melting of gold nanocrystals, nonequilibrium transformation of graphite into reversible diamond-like intermediates, and molecular scale charge dynamics, showing a versatility for not only determining the structures, but also the charge and energy redistribution at interfaces. A quantitative scheme for 3D retrieval of atomic structures is demonstrated with few-particle (<1,000) sensitivity, establishing this nanocrystallographic method as a tool for directly visualizing dynamics within isolated nanomaterials with atomic scale spatio-temporal resolution.

Author(s):  
K. L. Merkle

The atomic structures of internal interfaces have recently received considerable attention, not only because of their importance in determining many materials properties, but also because the atomic structure of many interfaces has become accessible to direct atomic-scale observation by modem HREM instruments. In this communication, several interface structures are examined by HREM in terms of their structural periodicities along the interface.It is well known that heterophase boundaries are generally formed by two low-index planes. Often, as is the case in many fcc metal/metal and metal/metal-oxide systems, low energy boundaries form in the cube-on-cube orientation on (111). Since the lattice parameter ratio between the two materials generally is not a rational number, such boundaries are incommensurate. Therefore, even though periodic arrays of misfit dislocations have been observed by TEM techniques for numerous heterophase systems, such interfaces are quasiperiodic on an atomic scale. Interfaces with misfit dislocations are semicoherent, where atomically well-matched regions alternate with regions of misfit. When the misfit is large, misfit localization is often difficult to detect, and direct determination of the atomic structure of the interface from HREM alone, may not be possible.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Abhik Datta ◽  
Kian Fong Ng ◽  
Deepan Balakrishnan ◽  
Melissa Ding ◽  
See Wee Chee ◽  
...  

AbstractFast, direct electron detectors have significantly improved the spatio-temporal resolution of electron microscopy movies. Preserving both spatial and temporal resolution in extended observations, however, requires storing prohibitively large amounts of data. Here, we describe an efficient and flexible data reduction and compression scheme (ReCoDe) that retains both spatial and temporal resolution by preserving individual electron events. Running ReCoDe on a workstation we demonstrate on-the-fly reduction and compression of raw data streaming off a detector at 3 GB/s, for hours of uninterrupted data collection. The output was 100-fold smaller than the raw data and saved directly onto network-attached storage drives over a 10 GbE connection. We discuss calibration techniques that support electron detection and counting (e.g., estimate electron backscattering rates, false positive rates, and data compressibility), and novel data analysis methods enabled by ReCoDe (e.g., recalibration of data post acquisition, and accurate estimation of coincidence loss).


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Liang Sun ◽  
Yu-Xing Zhou ◽  
Xu-Dong Wang ◽  
Yu-Han Chen ◽  
Volker L. Deringer ◽  
...  

AbstractThe Ge2Sb2Te5 alloy has served as the core material in phase-change memories with high switching speed and persistent storage capability at room temperature. However widely used, this composition is not suitable for embedded memories—for example, for automotive applications, which require very high working temperatures above 300 °C. Ge–Sb–Te alloys with higher Ge content, most prominently Ge2Sb1Te2 (‘212’), have been studied as suitable alternatives, but their atomic structures and structure–property relationships have remained widely unexplored. Here, we report comprehensive first-principles simulations that give insight into those emerging materials, located on the compositional tie-line between Ge2Sb1Te2 and elemental Ge, allowing for a direct comparison with the established Ge2Sb2Te5 material. Electronic-structure computations and smooth overlap of atomic positions (SOAP) similarity analyses explain the role of excess Ge content in the amorphous phases. Together with energetic analyses, a compositional threshold is identified for the viability of a homogeneous amorphous phase (‘zero bit’), which is required for memory applications. Based on the acquired knowledge at the atomic scale, we provide a materials design strategy for high-performance embedded phase-change memories with balanced speed and stability, as well as potentially good cycling capability.


2010 ◽  
Vol 1270 ◽  
Author(s):  
Giulia Grancini ◽  
Dario Polli ◽  
Jenny Clark ◽  
Tersilla Virgili ◽  
Giulio Cerullo ◽  
...  

AbstractWe introduce a novel instrument combining femtosecond pump-probe spectroscopy and confocal microscopy for spatio-temporal imaging of excited-state dynamics of phase-separated polymer blends. Phenomena occurring at interfaces between different materials are crucial for optimizing the device performances, but are poorly understood due to the variety of possible electronic states and processes involved and to their complicated dynamics. Our instrument (with 200-fs temporal resolution and 300-nm spatial resolution) provides new insights into the properties of polymer blends, revealing spatially variable photo-relaxation paths and dynamics and highlighting a peculiar behaviour at the interface between the phase-separated domains.


2010 ◽  
Vol 18 (4) ◽  
pp. 429-441 ◽  
Author(s):  
A. Rack ◽  
F. Garcia-Moreno ◽  
C. Schmitt ◽  
O. Betz ◽  
A. Cecilia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document