Quantitative Imaging of FRET-Based Biosensors for Cell- and Organelle-Specific Analyses in Plants

2016 ◽  
Vol 22 (2) ◽  
pp. 300-310 ◽  
Author(s):  
Swayoma Banerjee ◽  
Luis Rene Garcia ◽  
Wayne K. Versaw

AbstractGenetically encoded Förster resonance energy transfer (FRET)-based biosensors have been used to report relative concentrations of ions and small molecules, as well as changes in protein conformation, posttranslational modifications, and protein–protein interactions. Changes in FRET are typically quantified through ratiometric analysis of fluorescence intensities. Here we describe methods to evaluate ratiometric imaging data acquired through confocal microscopy of a FRET-based inorganic phosphate biosensor in different cells and subcellular compartments of Arabidopsis thaliana. Linear regression was applied to donor, acceptor, and FRET-derived acceptor fluorescence intensities obtained from images of multiple plants to estimate FRET ratios and associated location-specific spectral correction factors with high precision. FRET/donor ratios provided a combination of high dynamic range and precision for this biosensor when applied to the cytosol of both root and leaf cells, but lower precision when this ratiometric method was applied to chloroplasts. We attribute this effect to quenching of donor fluorescence because high precision was achieved with FRET/acceptor ratios and thus is the preferred ratiometric method for this organelle. A ligand-insensitive biosensor was also used to distinguish nonspecific changes in FRET ratios. These studies provide a useful guide for conducting quantitative ratiometric studies in live plants that is applicable to any FRET-based biosensor.

2020 ◽  
Author(s):  
Ting Chen ◽  
Ha T. Pham ◽  
Ali Mohamadi ◽  
Lawrence W. Miller

ABSTRACTResearch tools that enable imaging or analysis of protein-protein interactions (PPIs) directly within living cells provide unique and valuable biological insights and can also aid drug discovery efforts. Here, we present lanthanide-based, Förster resonance energy transfer (lanthanide-based FRET, or LRET) biosensors for time-gated luminescence (TGL) imaging or multiwell plate analysis of PPIs. Polypeptide chains comprised of an alpha helical linker flanked by a Tb(III) complex, GFP and two binding domains exhibit large differences in long-lifetime, Tb(III)-to-GFP LRET-sensitized emission between open (unbound) and closed (bound) states. We used TGL microscopy to image ca. 500% increases in Tb(III)-to-GFP LRET following rapamycin addition to NIH 3T3 cells that expressed biosensors bearing FKBP12 and the rapamycin binding domain of m-Tor (FRB) at each terminus. Much larger signal changes, up to ca. 2500%, were observed when cells were grown in 96-well or 384-well plates and analyzed using a TGL plate reader. We also measured the interaction of p53 and HDM2 and its inhibition within intact HeLa cells grown in 96-well plates and estimated a z’-factor of 0.5 for the assay. The modular design and high dynamic range of Tb(III)-based LRET biosensors will facilitate versatile imaging and cell-based screening of PPIs.


2006 ◽  
Vol 4 (1) ◽  
pp. nrs.04021 ◽  
Author(s):  
Kristen L. Koterba ◽  
Brian G. Rowan

Bioluminescent resonance energy transfer (BRET2) is a recently developed technology for the measurement of protein-protein interactions in a live, cell-based system. BRET2 is characterized by the efficient transfer of excited energy between a bioluminescent donor molecule (Renilla luciferase) and a fluorescent acceptor molecule (a mutant of Green Fluorescent Protein (GFP2)). The BRET2 assay offers advantages over fluorescence resonance energy transfer (FRET) because it does not require an external light source thereby eliminating problems of photobleaching and autoflourescence. The absence of contamination by light results in low background that permits detection of very small changes in the BRET2 signal. BRET2 is dependent on the orientation and distance between two fusion proteins and therefore requires extensive preliminary standardization experiments to conclude a positive BRET2 signal independent of variations in protein titrations and arrangement in tertiary structures. Estrogen receptor (ER) signaling is modulated by steroid receptor coactivator 1 (SRC-1). To establish BRET2 in a ligand inducible system we used SRC-1 as the donor moiety and ER as the acceptor moiety. Expression and functionality of the fusion proteins were assessed by transient transfection in HEK-293 cells followed by Western blot analysis and measurement of ER-dependent reporter gene activity. These preliminary determinations are required prior to measuring nuclear receptor protein-protein interactions by BRET2. This article describes in detail the BRET2 methodology for measuring interaction between full-length ER and coregulator proteins in real-time, in an in vivo environment.


Endocrinology ◽  
2013 ◽  
Vol 154 (10) ◽  
pp. 3925-3930 ◽  
Author(s):  
Xiuyan Feng ◽  
Meilin Zhang ◽  
Rongbin Guan ◽  
Deborah L. Segaloff

The LH receptor (LHR) and FSH receptor (FSHR) are each G protein-coupled receptors that play critical roles in reproductive endocrinology. Each of these receptors has previously been shown to self-associate into homodimers and oligomers shortly after their biosynthesis. As shown herein using bioluminescence resonance energy transfer to detect protein-protein interactions, our data show that the LHR and FSHR, when coexpressed in the same cells, specifically heterodimerize with each other. Further experiments confirm that at least a portion of the cellular LHR/FSHR heterodimers are present on the cell surface and are functional. We then sought to ascertain what effects, if any, heterodimerization between the LHR and FSHR might have on signaling. It was observed that when the LHR was expressed under conditions promoting the heterodimerization with FSHR, LH or human chorionic gonadotropin (hCG) stimulation of Gs was attenuated. Conversely, when the FSHR was expressed under conditions promoting heterodimerization with the LHR, FSH-stimulated Gs activation was attenuated. These results demonstrate that the coexpression of the LHR and FSHR enables heterodimerizaton between the 2 gonadotropin receptors and results in an attenuation of signaling through each receptor.


Sign in / Sign up

Export Citation Format

Share Document