scholarly journals Ultrastructural Morphology and Phylogeny of Henneguya sp. (Myxozoa) Infecting the Gills of the Teleostean Fish Cyphocharax Gilbert (Curimatidae) in Brazil

2016 ◽  
Vol 22 (S4) ◽  
pp. 10-11
Author(s):  
Graça Casal ◽  
Sérgio C.S. Clemente ◽  
Leila Lopes ◽  
Sónia Rocha ◽  
Nilza Felizardo ◽  
...  
Author(s):  
Becky Jackson

Preliminary investigation has indicated similarity in hepatic ultrastructural morphology in nutritional deprivation, and cyanide induced hepatic necrosis. Analysis of hepatic tissue has indicated disruption of intracellular membranes, specifically, reduction in rough endoplasmic reticulum (RER) mitochondrial integrity, and glycogen stores. An increase in smooth endoplasmic reticulum (SER) portion was observed.To further investigate the apparent equivalence of necrotic morphology, ultrastructura1ly, BDF1 mice were subjected to senescence, nutritional deprevation, potassium cyanide (KCN) induced toxemia, and acetaminophen induced toxemia. Controls were utilized to ellucidate non-necrotic hepatocellular normals. U1trastructura1 investigation of controls (Fig. 1) shows densely granular RER, abundant glycogen stores, and morphologically normal mitochondria. Subjects with acetaminophen induced necrosis exhibit reduced normal RER with increased levels of dialated, vesicular RER in apparent conversion to SER (Fig. 2), loss of mitochondrial integrity, and glycogen store reduction. Senescent subjects exhibit a pronounced increase in SER and loss of glycogen store. (Fig. 3). Investigation of the senescent SER at high magnification (Fig. 5) indicates that the SER is arising from degranulating and vesiculating RER.


Author(s):  
S. Jalalah ◽  
K. Kovacs ◽  
E. Horvath

Lactotrophs, as many other endocrine cells, change their morphology in response to factors influencing their secretory activity. Secretion of prolactin (PRL) from lactotrophs, like that of other anterior pituitary hormones, is under the control of the hypothalamus. Unlike most anterior pituitary hormones, PRL has no apparent target gland which could modulate the endocrine activity of lactotrophs. It is generally agreed that PRL regulates its own release from lactotrophs via the short loop negative feedback mechanism exerted at the level of the hypothalamus or the pituitary. Accordingly, ultrastructural morphology of lactotrophs is not constant; it is changing in response to high PRL levels showing signs of suppressed hormone synthesis and secretion.By transmission electron microscopy and morphometry, we have studied the morphology of lactotrophs in nontumorous (NT) portions of 7 human pituitaries containing PRL-secreting adenoma; these lactotrophs were exposed to abnormally high PRL levels.


1979 ◽  
Vol 58 (2_suppl) ◽  
pp. 922-929 ◽  
Author(s):  
M.U. Nylen

The literature on the ultrastructural morphology of the enamel matrix and its relationship to the crystals is reviewed. Two morphological entities of the matrix are discussed: One is the so-called stippled material which may be the initial cell product; the other, variously described as fibrillar, lamellar, tubular or helical, is thought by many to play a crucial role in nucleation and orientation of the crystals. A number of observations, however, suggest that the latter structures form secondarily to the crystals and that in reality they represent organic material adsorbed to the crystal surface and maintained as independent structures upon removal of the mineral. The need for additional studies is stressed including systematic studies of interactions between constituents of the organic matrix and the apatite crystals.


2019 ◽  
Vol 118 (6) ◽  
pp. 1967-1973 ◽  
Author(s):  
Lidiane Franceschini ◽  
Diego Henrique Mirandola Dias Vieira ◽  
Aline Cristina Zago ◽  
Rodney Kozlowiski Azevedo ◽  
Vanessa Doro Abdallah ◽  
...  

Parasitology ◽  
1975 ◽  
Vol 71 (2) ◽  
pp. 275-283 ◽  
Author(s):  
R. J. Love ◽  
Bridget M. Ogilvie ◽  
Diane J. McLaren

When adult Nippostrongylus brasiliensis were maintained in vitro they became damaged. Using the criteria of ultrastructural morphology, acetylcholinesterase isoenzyme pattern and the behaviour of the worms after transfer to a normal rat, this damage appeared to be similar to that produced by the in vivo action of antibodies.Antibodies were shown to be responsible for the anterior migration of adult worms which occurs during primary infections in mature rats and in the prolonged infections seen in lactating and immature rats.Antibody damaged worms and worms unaffected by antibodies were equally able to stimulate the immune response required for worm expulsion. Apparently antibody damage is not required for the initiation of the second immune component necessary for expulsion of this parasite.


Blood ◽  
1991 ◽  
Vol 77 (3) ◽  
pp. 569-578 ◽  
Author(s):  
AM Dvorak ◽  
W Massey ◽  
J Warner ◽  
S Kissell ◽  
A Kagey-Sobotka ◽  
...  

Isolated human skin mast cells (HSMC) were prepared and cultured overnight before functional and electron microscopic studies. Mast cell suspensions were examined after stimulation with anti-IgE to produce anaphylactic degranulation or examined in buffer-incubated controls. Histamine release was measured in replicate samples. Control, isolated HSMC studied by electron microscopy were well preserved and fully granulated. Although all granule patterns reported for human mast cells were found, crystal granules were the most prevalent, as is true for HSMC in situ. Individual mast cells containing both crystal and scroll granules occurred. Lipid bodies were rare, as in HSMC in situ. Control, isolated mast cells did not express granule changes associated with either piecemeal degranulation or recovery during wound healing in situ; nor were morphologic changes of anaphylactic degranulation present. Spontaneous histamine release was 0% in control samples. Anaphylactic degranulation of isolated HSMC was accompanied by 24% maximum histamine release and characteristically showed extrusion of altered, membrane-free granules through multiple pores in the plasma membrane to the exterior of the cell. Other morphologic aspects of anaphylactic degranulation, as expressed in isolated human lung mast cells, were also present. These events included granule swelling, fusion, alteration of matrix contents, degranulation channel formation, pore formation, and shedding of granules, membranes, and surface processes. The ultrastructural morphology of isolated HSMC and their IgE-mediated degranulation shows some differences from similar studies of isolated human lung mast cells and of human lung and gut mast cells in biopsy samples. These differences include crystal granules as the predominant granule pattern, minor numbers of lipid bodies, and extrusion of granules during anaphylactic degranulation as characteristic for HSMC. By contrast, isolated human lung and gut mast cells have more scroll granules and particle granules, respectively, and more lipid bodies. In isolated human lung mast cells, anaphylactic degranulation is almost exclusively an intracellular fusion event characterized by the formation of complex degranulation channels within which altered granule matrix materials solubilize. In addition to morphologic differences between mast cells of skin, lung, or gut origin, functional differences have also been reported among mast cells of these organs. The ultrastructural morphology of isolated HSMC is identical to that of skin mast cells in biopsy samples, thereby validating the usefulness of this new source of HSMC for correlative functional and morphologic studies.


Sign in / Sign up

Export Citation Format

Share Document