scholarly journals Characterization of Metal Matrix Composites Reinforced with Carbon Nanotubes by High Resolution Transmission Electron Microscopy

2017 ◽  
Vol 23 (S1) ◽  
pp. 1926-1927
Author(s):  
Cesar A. Isaza M ◽  
J. M. Meza ◽  
J. E. Ledezma Sillas ◽  
J. M. Herrera-Ramirez
Author(s):  
I. W. Hall ◽  
A. P. Diwanji

Carbon fiber reinforced metal matrix composites (MMC's) are an attractive class of materials for automotive and aerospace structural applications because of their high strength and stiffness to weight ratios and their low coefficients of thermal expansion. Successful development of these new materials demands a thorough understanding of the structure/property/processing relationships and, in particular, a detailed understanding of the fiber/matrix interface since this region strongly influences the final mechanical properties of the system. This interface is affected by many factors including the manufacturing method, heat treatment, matrix alloy composition and wettability of the fibers but, since it is a region which is typically much less than lμm wide, it is inaccessible to direct detailed observation by any means other than transmission electron microscopy.


2006 ◽  
Vol 15-17 ◽  
pp. 251-254
Author(s):  
Hong Mei Wei ◽  
Lin Geng ◽  
Xue Xi Zhang

Solidification behavior of SiCw/Al-18Si metal matrix composites (MMCs) was studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and differential scanning calorimeter (DSC) in order to reveal the effects of strontium addition and whisker content. The results show that the Si phase does not nucleate on SiC whisker surface. With the increasing of SiC whisker content, solidification onset and peak temperatures of primary Si decrease. Sr addition lowers solidification onset and peak temperatures of primary Si, and reduces its size. Whisker content has larger effects on solidification onset and peak temperatures of primary Si without Sr addition than that of primary Si with Sr addition.But solidification onset and peak temperatures of eutectic are barely affected by whisker content and Sr addition.


2009 ◽  
Vol 2009 ◽  
pp. 1-4 ◽  
Author(s):  
W. S. Zhang ◽  
J. G. Zheng ◽  
W. F. Li ◽  
D. Y. Geng ◽  
Z. D. Zhang

The boron-nitride (BN) nanocages are synthesized by nitrogenation of amorphous boron nanoparticles at 1073 K under nitrogen and ammonia atmosphere. The BN nanocages exhibit a well-crystallized feature with nearly pentagonal or spherical shape, depending on their size. High-resolution transmission electron microscopy studies reveal that they are hollow nanocages. The growth mechanism of the BN nanocages is proposed.


Sign in / Sign up

Export Citation Format

Share Document