Effect of Reheating and Quenching on the Cathodoluminescence Intensity of Free Lime in Steelmaking Slag

2021 ◽  
pp. 1-7
Author(s):  
Susumu Imashuku ◽  
Makoto Nagasako ◽  
Kazuaki Wagatsuma

Abstract

2017 ◽  
Vol 35 (6) ◽  
pp. 602-609 ◽  
Author(s):  
Praveen Kumar ◽  
D Satish Kumar ◽  
K Marutiram ◽  
SMR Prasad

Solid waste management has gained importance in the steel industry in view of rising environmental concerns and scarcity of raw materials. In spite of significant developments in reducing waste generation and development of recycling technologies, steel slag is still a concern for the industry as most of it is dumped. Steel slag is similar to stone aggregates in strength, but its volumetric instability in contact with water hinders its application as aggregates in construction. A part of steel slag is normally exposed to rain and sun for natural aging and stabilization for months before use. The natural aging process is slow and time-consuming, and thus restricts its usage. The steelmaking slag can be put to effective use as coarse aggregates if quickly aged and stabilized by pre-reacting the free expansive phases. In the present work, a new process has been developed to accelerate the steel slag aging process using steam in a 30 T pilot scale facility. The setup has controlled steam injection, distribution, and process control system for steam, temperature, flow, and pressure. Steam percolates through the minute pores in the slag lumps and hydrates the expansive free lime and MgO phases, making it stable. The aged slag expansion properties were tested using an in-house developed expansion testing apparatus. The process is capable of reducing the expansion of steel slag from 3.5% to <1.5% (standard requirement) in 7 days. The aged steel slag is currently being used in roads at JSW Steel, Vijayanagar Works.


2019 ◽  
Vol 105 (5) ◽  
pp. 522-529 ◽  
Author(s):  
Hiroki Tsuneda ◽  
Susumu Imashuku ◽  
Kazuaki Wagatsuma
Keyword(s):  

2017 ◽  
Vol 2 (77) ◽  
Author(s):  
N.N. Sinitsyn ◽  
D.S. Revyakina ◽  
D.S. Prokopeva ◽  
A.A. Kostyleva ◽  
V.V. Plashenkov

Author(s):  
Yury Rubanov ◽  
Yury Rubanov ◽  
Yulia Tokach ◽  
Yulia Tokach ◽  
Marina Vasilenko ◽  
...  

There was suggested a method of obtaining a complex adsorbent with magnetic properties for the oil spill clean-up from the water surface by means of controlled magnetic field. As magnetic filler a finely-dispersed iron-ore concentrate in the form of magnetite, obtained by wet magnetic separation of crushed iron ore, was suggested. As an adsorbing component the disintegrating electric-furnace steelmaking slag, obtained by dry air-cooling method, was selected. The mass ratio of components slag:magnetite is 1(1,5÷2,0). For cleaning up emergency oil spills with the suggested magnetic adsorbent a facility, which is installed on a twin-hulled oil recovery vessel, was designed. The vessel contains a rectangular case between the vessel hulls with inlet and outlet for the treated water, the bottom of which is a permanently moving belt. Above the belt, at the end point of it there is an oil-gathering drum with magnetic system. The adsorbent is poured to oil-products layer from a hopper, provided with drum feeder. Due to the increased bulk weight the adsorbent sinks rapidly into the oil layer on the water surface. If the large non-floating flocculi are formed, they sink and sedimentate on the moving belt and are moved to the oil-gathering drum. The saturated adsorbent is removed from the drum surface with a scraper, connected with a gutter, with contains a rotating auger.


Sign in / Sign up

Export Citation Format

Share Document