BIASED RANDOM WALKS, PARTIAL DIFFERENTIAL EQUATIONS AND UPDATE SCHEMES

2013 ◽  
Vol 55 (2) ◽  
pp. 93-108 ◽  
Author(s):  
JACK D. HYWOOD ◽  
KERRY A. LANDMAN

AbstractThere is much interest within the mathematical biology and statistical physics community in converting stochastic agent-based models for random walkers into a partial differential equation description for the average agent density. Here a collection of noninteracting biased random walkers on a one-dimensional lattice is considered. The usual master equation approach requires that two continuum limits, involving three parameters, namely step length, time step and the random walk bias, approach zero in a specific way. We are interested in the case where the two limits are not consistent. New results are obtained using a Fokker–Planck equation and the results are highly dependent on the simulation update schemes. The theoretical results are confirmed with examples. These findings provide insight into the importance of updating schemes to an accurate macroscopic description of stochastic local movement rules in agent-based models when the lattice spacing represents a physical object such as cell diameter.

2020 ◽  
Author(s):  
Sean L. Wu ◽  
Andrew J. Dolgert ◽  
Joseph A. Lewnard ◽  
John M. Marshall ◽  
David L. Smith

AbstractAfter more than a century of sustained work by mathematicians, biologists, epidemiologists, probabilists, and other experts, dynamic models have become a vital tool for understanding and describing epidemics and disease transmission systems. Such models fulfill a variety of crucial roles including data integration, estimation of disease burden, forecasting trends, counterfactual evaluation, and parameter estimation. These models often incorporate myriad details, from age and social structure to inform population mixing patterns, commuting and migration, and immunological dynamics, among others. This complexity can be daunting, so many researchers have turned to stochastic simulation using agent-based models. Developing agent-based models, however, can present formidable technical challenges. In particular, depending on how the model updates state, unwanted or even unnoticed approximations can be introduced into a simulation model. In this article, we present computational methods for approximating continuous time discrete event stochastic processes based on a discrete time step to speed up complicated simulations which also converges to the true process as the time step goes to zero. Our stochastic models is constructed via hazard functions, and only those hazards which are dependent on the state of other agents (such as infection) are approximated, whereas hazards governing dynamics internal to an agent (such as immune response) are simulated exactly. By partitioning hazards as being either dependent or internal, a generic algorithm can be presented which is applicable to many models of contagion processes, with natural areas of extension and optimization.Author summaryStochastic simulation of epidemics is crucial to a variety of tasks in public health, encompassing intervention evaluation, trend forecasting, and estimation of epidemic parameters, among others. In many situations, due to model complexity, time constraints, unavailability or unfamiliarity with existing software, or other reasons, agent-based models are used to simulate epidemic processes. However, many simulation algorithms are ad hoc, which may introduce unwanted or unnoticed approximations. We present a method to build approximate, agent-based models from mathematical descriptions of stochastic epidemic processes which will improve simulation speed and converge to exact simulation techniques in limiting cases. The simplicity and generality of our method should be widely applicable to various problems in mathematical epidemiology and its connection to other methods developed in chemical physics should inspire future work and elaboration.


Acta Numerica ◽  
2016 ◽  
Vol 25 ◽  
pp. 681-880 ◽  
Author(s):  
Tony Lelièvre ◽  
Gabriel Stoltz

The objective of molecular dynamics computations is to infer macroscopic properties of matter from atomistic models via averages with respect to probability measures dictated by the principles of statistical physics. Obtaining accurate results requires efficient sampling of atomistic configurations, which are typically generated using very long trajectories of stochastic differential equations in high dimensions, such as Langevin dynamics and its overdamped limit. Depending on the quantities of interest at the macroscopic level, one may also be interested in dynamical properties computed from averages over paths of these dynamics.This review describes how techniques from the analysis of partial differential equations can be used to devise good algorithms and to quantify their efficiency and accuracy. In particular, a crucial role is played by the study of the long-time behaviour of the solution to the Fokker–Planck equation associated with the stochastic dynamics.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 232-233
Author(s):  
Oshadi Jayakody ◽  
Monique Breslin ◽  
Richard Beare ◽  
Velandai Srikanth ◽  
Helena Blumen ◽  
...  

Abstract Gait variability is a marker of cognitive decline. However, there is limited understanding of the cortical regions associated with gait variability. We examined associations between regional cortical thickness and gait variability in a population-based sample of older people without dementia. Participants (n=350, mean age 71.9±7.1) were randomly selected from the electoral roll. Variability in step time, step length, step width and double support time (DST) were calculated as the standard deviation of each measure, obtained from the GAITRite walkway. MRI scans were processed through FreeSurfer to obtain cortical thickness of 68 regions. Bayesian regression was used to determine regional associations of mean cortical thickness and thickness ratio (regional thickness/overall mean thickness) with gait variability. Smaller overall cortical thickness was only associated with greater step width and step time variability. Smaller mean thickness in widespread regions important for sensory, cognitive and motor functions were associated with greater step width and step time variability. In contrast, smaller thickness in a few frontal and temporal regions were associated with DST variability and the right cuneus was associated with step length variability. Smaller thickness ratio in frontal and temporal regions important for motor planning, execution and sensory function and, greater thickness ratio in the anterior cingulate was associated with greater variability in all measures. Examining individual cortical regions is important in understanding the relationship between gray matter and gait variability. Cortical thickness ratio highlights that smaller regional thickness relative to global thickness may be important for the consistency of gait.


2021 ◽  
Vol 9 (2) ◽  
pp. 417
Author(s):  
Sherli Koshy-Chenthittayil ◽  
Linda Archambault ◽  
Dhananjai Senthilkumar ◽  
Reinhard Laubenbacher ◽  
Pedro Mendes ◽  
...  

The human microbiome has been a focus of intense study in recent years. Most of the living organisms comprising the microbiome exist in the form of biofilms on mucosal surfaces lining our digestive, respiratory, and genito-urinary tracts. While health-associated microbiota contribute to digestion, provide essential nutrients, and protect us from pathogens, disturbances due to illness or medical interventions contribute to infections, some that can be fatal. Myriad biological processes influence the make-up of the microbiota, for example: growth, division, death, and production of extracellular polymers (EPS), and metabolites. Inter-species interactions include competition, inhibition, and symbiosis. Computational models are becoming widely used to better understand these interactions. Agent-based modeling is a particularly useful computational approach to implement the various complex interactions in microbial communities when appropriately combined with an experimental approach. In these models, each cell is represented as an autonomous agent with its own set of rules, with different rules for each species. In this review, we will discuss innovations in agent-based modeling of biofilms and the microbiota in the past five years from the biological and mathematical perspectives and discuss how agent-based models can be further utilized to enhance our comprehension of the complex world of polymicrobial biofilms and the microbiome.


Sign in / Sign up

Export Citation Format

Share Document