ON EXISTENCE AND UNIQUENESS OF SOLUTIONS TO A PANTOGRAPH TYPE EQUATION

2021 ◽  
pp. 1-24
Author(s):  
M. MOHSIN ◽  
A. A. ZAIDI

Abstract We show existence and uniqueness of solutions to an initial boundary value problem that entails a pantograph type functional partial differential equation with two advanced nonlocal terms. The problem models cell growth and division into two daughter cells of different sizes. There is a paucity of information about the solution to the problem for an arbitrary initial cell distribution.

2021 ◽  
Vol 62 ◽  
pp. 489-512
Author(s):  
Muhammad Mohsin ◽  
Ali Ashher Zaidi

We show existence and uniqueness of solutions to an initial boundary value problem that entails a pantograph type functional partial differential equation with two advanced nonlocal terms. The problem models cell growth and division into two daughter cells of different sizes. There is a paucity of information about the solution to the problem for an arbitrary initial cell distribution. doi:10.1017/S144618112100002X


Author(s):  
István Rácz

The constraint equations in Maxwell theory are investigated. In analogy with some recent results on the constraints of general relativity it is shown, regardless of the signature and dimension of the ambient space, that the "divergence of a vector field" type constraints can always be put into linear first order hyperbolic form for which global existence and uniqueness of solutions to an initial-boundary value problem is guaranteed.


2020 ◽  
Vol 40 (6) ◽  
pp. 725-736
Author(s):  
Mitsuhiro Nakao

We consider the initial-boundary value problem for semilinear dissipative wave equations in noncylindrical domain \(\bigcup_{0\leq t \lt\infty} \Omega(t)\times\{t\} \subset \mathbb{R}^N\times \mathbb{R}\). We are interested in finite energy solution. We derive an exponential decay of the energy in the case \(\Omega(t)\) is bounded in \(\mathbb{R}^N\) and the estimate \[\int\limits_0^{\infty} E(t)dt \leq C(E(0),\|u(0)\|)< \infty\] in the case \(\Omega(t)\) is unbounded. Existence and uniqueness of finite energy solution are also proved.


Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1998
Author(s):  
Mohamed Biomy ◽  
Khaled Zennir ◽  
Ahmed Himadan

In this paper, we consider an initial boundary value problem for nonlinear Love equation with infinite memory. By combining the linearization method, the Faedo–Galerkin method, and the weak compactness method, the local existence and uniqueness of weak solution is proved. Using the potential well method, it is shown that the solution for a class of Love-equation exists globally under some conditions on the initial datum and kernel function.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
N. A. Larkin

An initial-boundary value problem for the 2D Kawahara-Burgers equation posed on a channel-type strip was considered. The existence and uniqueness results for regular and weak solutions in weighted spaces as well as exponential decay of small solutions without restrictions on the width of a strip were proven both for regular solutions in an elevated norm and for weak solutions in theL2-norm.


2006 ◽  
Vol 16 (10) ◽  
pp. 1559-1598 ◽  
Author(s):  
ALFREDO BERMÚDEZ ◽  
RODOLFO RODRÍGUEZ ◽  
DUARTE SANTAMARINA

This paper deals with a time-domain mathematical model for dissipative acoustics and is organized as follows. First, the equations of this model are written in terms of displacement and temperature fields and an energy equation is obtained. The resulting initial-boundary value problem is written in a functional framework allowing us to prove the existence and uniqueness of solution. Next, two different time-discretization schemes are proposed, and stability and error estimates are proved for both. Finally, numerical results are reported which were obtained by combining these time-schemes with Lagrangian and Raviart–Thomas finite elements for temperature and displacement fields, respectively.


Sign in / Sign up

Export Citation Format

Share Document