scholarly journals Semigroup structures for families of functions, I. Some Homomorphism Theorems

1967 ◽  
Vol 7 (1) ◽  
pp. 81-94 ◽  
Author(s):  
Kenneth D. Magill

This is the first of several papers which grew out of an attempt to provide C (X, Y), the family of all continuous functions mapping a topological space X into a topological space Y, with an algebraic structure. In the event Y has an algebraic structure with which the topological structure is compatible, pointwise operations can be defined on C (X, Y). Indeed, this has been done and has proved extremely fruitful, especially in the case of the ring C (X, R) of all continuous, real-valued functions defined on X [3]. Now, one can provide C(X, Y) with an algebraic structure even in the absence of an algebraic structure on Y. In fact, each continuous function from Y into X determines, in a natural way, a semigroup structure for C(X, Y). To see this, let ƒ be any continuous function from Y into X and for ƒ and g in C(X, Y), define ƒg by each x in X.

2003 ◽  
Vol 2003 (72) ◽  
pp. 4547-4555
Author(s):  
Bassam Al-Nashef

The family of regular closed subsets of a topological space is used to introduce two concepts concerning a functionffrom a spaceXto a spaceY. The first of them is the notion offbeing rc-continuous. One of the established results states that a spaceYis extremally disconnected if and only if each continuous function from a spaceXtoYis rc-continuous. The second concept studied is the notion of a functionfhaving an rc-strongly closed graph. Also one of the established results characterizes rc-compact spaces (≡S-closed spaces) in terms of functions that possess rc-strongly closed graph.


1979 ◽  
Vol 20 (3) ◽  
pp. 367-375 ◽  
Author(s):  
G.J. Logan

A closure algebra is a set X with a closure operator C defined on it. It is possible to construct a topology τ on MX, the family of maximal, proper, closed subsets of X, and then to examine the relationship between the algebraic structure of (X, C) and the topological structure of the dual space (MX τ) This paper describes the algebraic conditions which are necessary and sufficient for the dual space to be separable metric and metric respectively.


1980 ◽  
Vol 45 (1) ◽  
pp. 103-120 ◽  
Author(s):  
J. V. Tucker

A natural way of studying the computability of an algebraic structure or process is to apply some of the theory of the recursive functions to the algebra under consideration through the manufacture of appropriate coordinate systems from the natural numbers. An algebraic structure A = (A; σ1,…, σk) is computable if it possesses a recursive coordinate system in the following precise sense: associated to A there is a pair (α, Ω) consisting of a recursive set of natural numbers Ω and a surjection α: Ω → A so that (i) the relation defined on Ω by n ≡α m iff α(n) = α(m) in A is recursive, and (ii) each of the operations of A may be effectively followed in Ω, that is, for each (say) r-ary operation σ on A there is an r argument recursive function on Ω which commutes the diagramwherein αr is r-fold α × … × α.This concept of a computable algebraic system is the independent technical idea of M.O.Rabin [18] and A.I.Mal'cev [14]. From these first papers one may learn of the strength and elegance of the general method of coordinatising; note-worthy for us is the fact that computability is a finiteness condition of algebra—an isomorphism invariant possessed of all finite algebraic systems—and that it serves to set upon an algebraic foundation the combinatorial idea that a system can be combinatorially presented and have effectively decidable term or word problem.


1967 ◽  
Vol 10 (5) ◽  
pp. 735-738
Author(s):  
J. B. Sabat

The “function” δ(x - xo) is known as the Dirac Delta function and may be defined as zero everywhere except at xo, where it is infinite in such a way that1having property that for every continuous function φ(x) on (a, b)2It is well known [2] δ(x-xo) can be approximated as a limit of a sequence of piecewise continuous functions, and there is an abundance of such sequences.


1975 ◽  
Vol 13 (2) ◽  
pp. 241-254 ◽  
Author(s):  
E. Tarafdar

Let (E, τ) be a locally convex linear Hausdorff topological space. We have proved mainly the following results.(i) Let f be nonexpansive on a nonempty τ-sequentially complete, τ-bounded, and starshaped subset M of E and let (I-f) map τ-bounded and τ-sequentially closed subsets of M into τ-sequentially closed subsets of M. Then f has a fixed-point in M.(ii) Let f be nonexpansive on a nonempty, τ-sequentially compact, and starshaped subset M of E. Then f has a fixed-point in M.(iii) Let (E, τ) be τ-quasi-complete. Let X be a nonempty, τ-bounded, τ-closed, and convex subset of E and M be a τ-compact subset of X. Let F be a commutative family of nonexpansive mappings on X having the property that for some f1 ∈ F and for each x ∈ X, τ-closure of the setcontains a point of M. Then the family F has a common fixed-point in M.


Author(s):  
A. Cant ◽  
C. A. Hurst

The algebraic structure of relativistic wave equations of the formis considered. This leads to the problem of finding all Lie algebrasLwhich contain the Lorentz Lie algebraso(3, 1) and also contain a “four-vector” αμa such anLgives rise to a family of wave equations. The simplest possibility is the Bhabha equations whereL≅so(5). Some authors have claimed that this is theonlyone, but it is shown that there are many other possibilities still in accord with physical requirements. Known facts about representations, along with Dynkin's theory of the embeddings of Lie algebras, are used to obtain a partial classification of wave equations. The discrete transformationsC, P, Tare also discussed, along with reality properties. Finally, a simple example of a family of wave equations based onL=sp(12) is considered in detail. Theso(3, 1) content and mass spectra are given for the low order members of the family, and the problem of causality is briefly discussed.


2015 ◽  
Vol 6 (3) ◽  
Author(s):  
Roman A. Veprintsev

AbstractWe establish a necessary and sufficient condition on a continuous function on [-1,1] under which the family of functions on the unit sphere 𝕊


1989 ◽  
Vol 31 (1) ◽  
pp. 59-64 ◽  
Author(s):  
Marek Nawrocki

Let X be a completely regular Hausdorff space. A Nachbin family of weights is a set V of upper-semicontinuous positive functions on X such that if u, υ ∈ V then there exists w ∈ V and t > 0 so that u, υ ≤ tw. For any Hausdorff topological vector space E, the weighted space CV0(X, E) is the space of all E-valued continuous functions f on X such that υf vanishes at infinity for all υ ∈ V. CV0(X, E) is equipped with the weighted topologywv = wv(X, E) which has as a base of neighbourhoods of zero the family of all sets of the formwhere υ ∈ Vand W is a neighbourhood of zero in E. If E is the scalar field, then the space CV0(X, E) is denoted by CV0(X). The reader is referred to [4, 6, 8] for information on weighted spaces.


The main view of this article is the extended version of the fine topological space to the novel kind of space say fine fuzzy topological space which is developed by the notion called collection of quasi coincident of fuzzy sets. In this connection, fine fuzzy closed sets are introduced and studied some features on it. Further, the relationship between fine fuzzy closed sets with certain types of fine fuzzy closed sets are investigated and their converses need not be true are elucidated with necessary examples. Fine fuzzy continuous function is defined as the inverse image of fine fuzzy closed set is fine fuzzy closed and its interrelations with other types of fine fuzzy continuous functions are obtained. The reverse implication need not be true is proven with examples. Finally, the applications of fine fuzzy continuous function are explained by using the composition.


2021 ◽  
Vol 9 (1) ◽  
pp. 250-263
Author(s):  
V. Mykhaylyuk ◽  
O. Karlova

In 1932 Sierpi\'nski proved that every real-valued separately continuous function defined on the plane $\mathbb R^2$ is determined uniquely on any everywhere dense subset of $\mathbb R^2$. Namely, if two separately continuous functions coincide of an everywhere dense subset of $\mathbb R^2$, then they are equal at each point of the plane. Piotrowski and Wingler showed that above-mentioned results can be transferred to maps with values in completely regular spaces. They proved that if every separately continuous function $f:X\times Y\to \mathbb R$ is feebly continuous, then for every completely regular space $Z$ every separately continuous map defined on $X\times Y$ with values in $Z$ is determined uniquely on everywhere dense subset of $X\times Y$. Henriksen and Woods proved that for an infinite cardinal $\aleph$, an $\aleph^+$-Baire space $X$ and a topological space $Y$ with countable $\pi$-character every separately continuous function $f:X\times Y\to \mathbb R$ is also determined uniquely on everywhere dense subset of $X\times Y$. Later, Mykhaylyuk proved the same result for a Baire space $X$, a topological space $Y$ with countable $\pi$-character and Urysohn space $Z$. Moreover, it is natural to consider weaker conditions than separate continuity. The results in this direction were obtained by Volodymyr Maslyuchenko and Filipchuk. They proved that if $X$ is a Baire space, $Y$ is a topological space with countable $\pi$-character, $Z$ is Urysohn space, $A\subseteq X\times Y$ is everywhere dense set, $f:X\times Y\to Z$ and $g:X\times Y\to Z$ are weakly horizontally quasi-continuous, continuous with respect to the second variable, equi-feebly continuous wuth respect to the first one and such that $f|_A=g|_A$, then $f=g$. In this paper we generalize all of the results mentioned above. Moreover, we analize classes of topological spaces wich are favorable for Sierpi\'nsi-type theorems.


Sign in / Sign up

Export Citation Format

Share Document