On the Structure of Group Algebras, I

1965 ◽  
Vol 17 ◽  
pp. 583-593 ◽  
Author(s):  
James A. Cohn ◽  
Donald Livingstone

With this paper we begin a study of the structure of the group algebra RG of a finite group G over the ring of algebraic integers R in an algebraic number field k. The basic question is whether non-isomorphic groups can have isomorphic algebras over R. We shall show that this is impossible if G is (a) abelian,(b) Hamiltonian,(c) one of a special class of p-groups.

1971 ◽  
Vol 44 ◽  
pp. 57-59 ◽  
Author(s):  
Yukio Tsushima

Let G be a finite group and let p be a fixed prime number. If D is any p-subgroup of G, then the problem whether there exists a p-block with D as its defect group is reduced to whether NG(D)/D possesses a p-block of defect 0. Some necessary or sufficient conditions for a finite group to possess a p-block of defect 0 have been known (Brauer-Fowler [1], Green [3], Ito [4] [5]). In this paper we shall show that the existences of such blocks depend on the multiplicative structures of the p-elements of G. Namely, let p be a prime divisor of p in an algebraic number field which is a splitting one for G, o the ring of p-integers and k = o/p, the residue class field.


1960 ◽  
Vol 16 ◽  
pp. 83-90 ◽  
Author(s):  
Hideo Yokoi

1. Introduction. It is known that there are only three rationally inequivalent classes of indecomposable integral representations of a cyclic group of prime order l. The representations of these classes are: (I) identical representation,(II) rationally irreducible representation of degree l – 1,(III) indecomposable representation consisting of one identical representation and one rationally irreducible representation of degree l-1 (F. E. Diederichsen [1], I. Reiner [2]).


2017 ◽  
Vol 13 (10) ◽  
pp. 2505-2514 ◽  
Author(s):  
Anuj Jakhar ◽  
Sudesh K. Khanduja ◽  
Neeraj Sangwan

Let [Formula: see text] denote the ring of algebraic integers of an algebraic number field [Formula: see text], where [Formula: see text] is a root of an irreducible trinomial [Formula: see text] belonging to [Formula: see text]. In this paper, we give necessary and sufficient conditions involving only [Formula: see text] for a given prime [Formula: see text] to divide the index of the subgroup [Formula: see text] in [Formula: see text]. In particular, we deduce necessary and sufficient conditions for [Formula: see text] to be equal to [Formula: see text].


1980 ◽  
Vol 29 (4) ◽  
pp. 385-392 ◽  
Author(s):  
G. Karpilovsky

AbstractLet Out (RG) be the set of all outer R-automorphisms of a group ring RG of arbitrary group G over a commutative ring R with 1. It is proved that there is a bijective correspondence between the set Out (RG) and a set consisting of R(G × G)-isomorphism classes of R-free R(G × G)-modules of a certain type. For the case when G is finite and R is the ring of algebraic integers of an algebraic number field the above result implies that there are only finitely many conjugacy classes of group bases in RG. A generalization of a result due to R. Sandling is also provided.


1993 ◽  
Vol 113 (3) ◽  
pp. 449-460 ◽  
Author(s):  
Sir Peter Swinnerton-Dyer

1. Let V be a non-singular rational surface defined over an algebraic number field k. There is a standard conjecture that the only obstructions to the Hasse principle and to weak approximation on V are the Brauer–Manin obstructions. A prerequisite for calculating these is a knowledge of the Brauer group of V; indeed there is one such obstruction, which may however be trivial, corresponding to each element of Br V/Br k. Because k is an algebraic number field, the natural injectionis an isomorphism; so the first step in calculating the Brauer–Manin obstruction is to calculate the finite group H1 (k), Pic .


1988 ◽  
Vol 53 (2) ◽  
pp. 470-480 ◽  
Author(s):  
Masahiro Yasumoto

LetKbe an algebraic number field andIKthe ring of algebraic integers inK. *Kand *IKdenote enlargements ofKandIKrespectively. LetxЄ *K–K. In this paper, we are concerned with algebraic extensions ofK(x)within *K. For eachxЄ *K–Kand each natural numberd, YK(x,d)is defined to be the number of algebraic extensions ofK(x)of degreedwithin *K.xЄ *K–Kis called a Hilbertian element ifYK(x,d)= 0 for alldЄ N,d> 1; in other words,K(x)has no algebraic extension within *K. In their paper [2], P. C. Gilmore and A. Robinson proved that the existence of a Hilbertian element is equivalent to Hilbert's irreducibility theorem. In a previous paper [9], we gave many Hilbertian elements of nonstandard integers explicitly, for example, for any nonstandard natural numberω, 2ωPωand 2ω(ω3+ 1) are Hilbertian elements in*Q, where pωis theωth prime number.


1970 ◽  
Vol 22 (3) ◽  
pp. 626-640 ◽  
Author(s):  
Charles Ford

Let ℭ be a finite group with a representation as an irreducible group of linear transformations on a finite-dimensional complex vector space. Every choice of a basis for the space gives the representing transformations the form of a particular group of matrices. If for some choice of a basis the resulting group of matrices has entries which all lie in a subfield K of the complex field, we say that the representation can be realized in K. It is well known that every representation of ℭ can be realized in some algebraic number field, a finitedimensional extension of the rational field Q.


Author(s):  
Zhiyong Zheng ◽  
Man Chen ◽  
Jie Xu

It is a difficult question to generalize Gauss sums to a ring of algebraic integers of an arbitrary algebraic number field. In this paper, we define and discuss Gauss sums over a Dedekind domain of finite norm. In particular, we give a Davenport–Hasse type formula for some special Gauss sums. As an application, we give some more precise formulas for Gauss sums over the algebraic integer ring of an algebraic number field (see Theorems 4.1 and 4.2).


1988 ◽  
Vol 112 ◽  
pp. 1-24 ◽  
Author(s):  
Takayuki Hibi

Our dream is to revive the ideal theory in partially ordered sets from a viewpoint of commutative algebra.Historically, the concept of ideals in commutative algebra was first studied by Dedekind, who considered the ring of algebraic integers in an algebraic number field.


2010 ◽  
Vol 60 (6) ◽  
Author(s):  
Juraj Kostra

AbstractLet K be a tamely ramified cyclic algebraic number field of prime degree l. In the paper one-to-one correspondence between all orders of K with a normal basis and all ideals of K with a normal basis is given.


Sign in / Sign up

Export Citation Format

Share Document