scholarly journals Recursive equivalence types of vector spaces

1974 ◽  
Vol 18 (3) ◽  
pp. 376-384 ◽  
Author(s):  
Alan G. Hamilton

We consider subspaces of a vector space UF, which is countably infinite dimensional over a recursively enumerable field F with recursive operations, where the operations in UF are also recursive, and where, of course, F and UF are sets of natural numbers. It is the object of this paper to investigate recursive equivalence types of such vector spaces and the ways in which their properties are analogous to and depend on properties of recursive equivalence types of sets.

1970 ◽  
Vol 35 (1) ◽  
pp. 85-96
Author(s):  
Alan G. Hamilton

This paper is based on the notions originally described by Dekker [2], [3], and the reader is referred to these for explanation of notation etc. Briefly, we are concerned with a countably infinite dimensional countable vector space Ū with recursive operations, regarded as being coded as a set of natural numbers. Necessarily, then, Ū must be a vector space over a field which itself is in some sense recursively enumerable and has recursive operations.


1980 ◽  
Vol 45 (1) ◽  
pp. 20-34 ◽  
Author(s):  
J. Remmel

The concern of this paper is with recursively enumerable and co-recursively enumerable subspaces of a recursively presented vector spaceV∞ over a (finite or infinite) recursive field F which is defined in [6] to consist of a recursive subset U of the natural numbers N and operations of vector addition and scalar multiplication which are partial recursive and under which V∞ becomes a vector space. Throughout this paper, we will identify V∞ with N, say via some fixed Gödel numbering, and assume V∞ is infinite dimensional and has a dependence algorithm, i.e., there is a uniform effective procedure which determines whether or not any given n-tuple v0, …, vn−1 from V∞ is linearly dependent. Various properties of V∞ and its sub-spaces have been studied by Dekker [1], Guhl [3], Metakides and Nerode [6], Kalantari and Retzlaff [4], and the author [7].Given a subspace W of V∞, we say W is r.e. (co-r.e.) if W(V∞ − W) is an r.e. subset of N and write dim(V) for the dimension of V. Given subspaces V, W of V∞, V + W will denote the weak sum of V and W and if V ⋂ M = {0} (where 0 is the zero vector of V∞), we write V ⊕ Winstead of V + W. If W ⊇ V, we write Wmod V for the quotient space. An independent set A ⊆ V∞ is extendible if there is an r.e. independent set I ⊇ A such that I − A is infinite and A is nonextendible if it is not the case An is extendible. A r.e. subspace M ⊇ V∞ is maximal if dim(V∞ mod M) = ∞ and for any r.e. subspace W ⊇ Meither dim(W mod M) < ∞ or dim(V∞ mod W) < ∞.


1977 ◽  
Vol 42 (3) ◽  
pp. 400-418 ◽  
Author(s):  
J. B. Remmel

Let N denote the natural numbers. If A ⊆ N, we write Ā for the complement of A in N. A set A ⊆ N is cohesive if (i) A is infinite and (ii) for any recursively enumerable set W either W ∩ A or ∩ A is finite. A r.e. set M ⊆ N is maximal if is cohesive.A recursively presented vector space (r.p.v.s.) U over a recursive field F consists of a recursive set U ⊆ N and operations of vector addition and scalar multiplication which are partial recursive and under which U becomes a vector space. A r.p.v.s. U has a dependence algorithm if there is a uniform effective procedure which applied to any n-tuple ν0, ν1, …, νn−1 of elements of U determines whether or not ν0, ν1 …, νn−1 are linearly dependent. Throughout this paper we assume that if U is a r.p.v.s. over a recursive field F then U is infinite dimensional and U = N. If W ⊆ U, then we say W is recursive (r.e., etc.) iff W is a recursive (r.e., etc.) subset of N. If S ⊆ U, we write (S)* for the subspace generated by S. If V1 and V2 are subspaces of U such that V1 ∩ V2 ={} (where is the zero vector of U), then we write V1 ⊕ V2 for (V1 ∪ V2)*. If V1 ⊆ V2⊆U are subspaces, we write V2/V1 for the quotient space.


1978 ◽  
Vol 43 (2) ◽  
pp. 293-303 ◽  
Author(s):  
Iraj Kalantari

The main point of this paper is a further development of some aspects of the recent theory of recursively enumerable (r.e.) algebraic structures. Initial work in this area is due to Frölich and Shepherdson [4] and Rabin [10]. Here we are only concerned with vector space structure. The previous work on r.e. vector spaces is due to Dekker [2], [3], Metakides and Nerode [8], Remmel [11], Retzlaff [13], and the author [5].Our object of study is V∞ a countably infinite dimensional fully effective vector space over a countable recursive field . By fully effective we mean that V∞. under a fixed Godel numbering has the following properties:(i) Operations of vector addition and scalar multiplication on V∞ are presented by partial recursive functions on the Gödel numbers of elements of V∞.(ii) V∞ has a dependence algorithm, i.e., there is a uniform effective procedure which applied to any n vectors of V∞ determines whether or not they are linearly independent.We also study , the lattice of r.e. subspaces of V∞ (under the operations of intersection, ⋂ and (weak) sum, +). We note that if is not distributive and is merely modular (see [1]). This fact indicates the essential difference between the lattice of r.e. sets and .


1977 ◽  
Vol 42 (4) ◽  
pp. 481-491 ◽  
Author(s):  
Iraj Kalantari ◽  
Allen Retzlaff

The area of interest of this paper is recursively enumerable vector spaces; its origins lie in the works of Rabin [16], Dekker [4], [5], Crossley and Nerode [3], and Metakides and Nerode [14]. We concern ourselves here with questions about maximal vector spaces, a notion introduced by Metakides and Nerode in [14]. The domain of discourse is V∞ a fully effective, countably infinite dimensional vector space over a recursive infinite field F.By fully effective we mean that V∞, under a fixed Gödel numbering, has the following properties:(i) The operations of vector addition and scalar multiplication on V∞ are represented by recursive functions.(ii) There is a uniform effective procedure which, given n vectors, determines whether or not they are linearly dependent (the procedure is called a dependence algorithm).We denote the Gödel number of x by ⌈x⌉ By taking {εn ∣ n > 0} to be a fixed recursive basis for V∞, we may effectively represent elements of V∞ in terms of this basis. Each element of V∞ may be identified uniquely by a finitely-nonzero sequence from F Under this identification, εn corresponds to the sequence whose n th entry is 1 and all other entries are 0. A recursively enumerable (r.e.) space is a subspace of V∞ which is an r.e. set of integers, ℒ(V∞) denotes the lattice of all r.e. spaces under the operations of intersection and weak sum. For V, W ∈ ℒ(V∞), let V mod W denote the quotient space. Metakides and Nerode define an r.e. space M to be maximal if V∞ mod M is infinite dimensional and for all V ∈ ℒ(V∞), if V ⊇ M then either V mod M or V∞ mod V is finite dimensional. That is, M has a very simple lattice of r.e. superspaces.


1978 ◽  
Vol 43 (2) ◽  
pp. 260-269 ◽  
Author(s):  
Allen Retzlaff

AbstractLet V∞ be a fixed, fully effective, infinite dimensional vector space. Let be the lattice consisting of the recursively enumerable (r.e.) subspaces of V∞, under the operations of intersection and weak sum (see §1 for precise definitions). In this article we examine the algebraic properties of .Early research on recursively enumerable algebraic structures was done by Rabin [14], Frölich and Shepherdson [5], Dekker [3], Hamilton [7], and Guhl [6]. Our results are based upon the more recent work concerning vector spaces of Metakides and Nerode [12], Crossley and Nerode [2], Remmel [15], [16], and Kalantari [8].In the main theorem below, we extend a result of Lachlan from the lattice of r.e. sets to . We define hyperhypersimple vector spaces, discuss some of their properties and show if A, B ∈ , and A is a hyperhypersimple subspace of B then there is a recursive space C such that A + C = B. It will be proven that if V ∈ and the lattice of superspaces of V is a complemented modular lattice then V is hyperhypersimple. The final section contains a summary of related results concerning maximality and simplicity.


1978 ◽  
Vol 43 (3) ◽  
pp. 430-441 ◽  
Author(s):  
J. Remmel

In [4], Metakides and Nerode define a recursively presented vector space V∞. over a (finite or infinite) recursive field F to consist of a recursive subset U of the natural numbers N and operations of vector addition and scalar multiplication which are partial recursive and under which V∞ becomes a vector space. Throughout this paper, we will identify V∞ with N, say via some fixed Gödel numbering, and assume V∞ is infinite dimensional and has a dependence algorithm, i.e., there is a uniform effective procedure which determines whether any given n-tuple v0, …, vn−1 from V∞ is linearly dependent. Given a subspace W of V∞, we write dim(W) for the dimension of W. Given subspaces V and W of V∞, V + W will denote the weak sum of V and W and if V ∩ W = {0) (where 0 is the zero vector of V∞), we write V ⊕ W instead of V + W. If W ⊇ V, we write W mod V for the quotient space. An independent set A ⊆ V∞ is extendible if there is a r.e. independent set I ⊇ A such that I − A is infinite and A is nonextendible if it is not the case that A is extendible.


1974 ◽  
Vol 18 (2) ◽  
pp. 230-235 ◽  
Author(s):  
Robert I. Soare

Terminology and notation may be found in Dekker [1] and [2]. Briefly, we fix a recursively enumerable (r.e.) field F with recursive structure, and let Ū be the vector space over F consisting of ultimately vanishing countable sequences of elements of F with the usual definitions of vector addition and multiplication by a scalar. A subspace V of Ū is called an α-space if V has a basis B which is contained in some r.e. linearly independent set S.


Author(s):  
José Ramón Játem Lásser

  In this article we have presented a new approach to define algebras using for a natural number k ≥ 2, the set of natural numbers in base k, none of their digits equal to zero. The study was developed in the context of vector R -spaces and the vector space definitions of the formal multiples of any element x of the field R, of the direct sum of vector spaces and binary operations on vector spaces were used. The results obtained were the construction of a vector space denoted by V, on the basis of the particular set of natural numbers in base k mentioned, which allowed novel ways of defining the well-known and very important algebras of complex numbers and that of quaternions on R as quotients of ideals of V, for suitably chosen ideals I. With this new approach and with the help of the vector spaces V, known algebras can be presented in a different way than those found up to now, by using certain ideals of those spaces in their quotient form. The spaces V can be over any field K and other algebras such as Clifford algebras can be constructed using this procedure.   Keywords: Algebras, Quotients in algebras, Complex numbers and quaternions as quotients of algebras.   Abstract En este artículo se ha presentado un nuevo enfoque para definir álgebras usando para un número natural k ≥ 2, el conjunto de números naturales en base k, ninguno de sus dígitos iguales a cero. El estudio se desarrolló en el contexto de los R-espacios vectoriales y se usaron las definiciones de espacio vectorial de los múltiplos formales de un elemento cualquiera x del cuerpo R, de la suma directa de espacios vectoriales y operaciones binarias sobre espacios vectoriales. Los resultados obtenidos fueron la construcción de un espacio vectorial denotado por V, sobre la base del particular conjunto de números naturales en base k mencionado, que permitió novedosas formas de definir las conocidas y muy importantes álgebras de los números complejos y la de los cuaterniones sobre R como cocientes de ideales de V, para ideales I convenientemente elegidos. Con este nuevo enfoque y con la ayuda de los espacios vectoriales V se pueden presentar álgebras conocidas de manera distinta a las encontradas hasta ahora, al usar en su forma de cociente ciertos ideales de esos espacios V. Los espacios V pueden ser sobre cualquier cuerpo K y otras álgebras como las álgebras de Clifford se pueden construir usando este procedimiento.   Palabras claves: Algebras, cocientes en álgebras, Números complejos y quaterniones como cocientes en álgebras.  


1977 ◽  
Vol 16 (3) ◽  
pp. 371-378 ◽  
Author(s):  
A.R. Aggarwal ◽  
M.K. Agrawal

Let p be a rational prime and Qp be the field of p–adic numbers. Jean-Pierre Serre [Lecture Notes in Mathematics, 350, 191–268 (1973)] had defined p–adic modular forms as the limits of sequences of modular forms over the modular group SL2(Z). He proved that with each non-zero p–adic modular form there is associated a unique element called its weight k. The p–adic modular forms having the same weight form a Qp–vector space.The object of this paper is to obtain a basis of p–adic modular forms and thus to know precisely all p–adic modular forms of a given weight k. The dimension of such modular forms as a Qp–vector space is countably infinite.


Sign in / Sign up

Export Citation Format

Share Document