scholarly journals Generation of generators of holomorphic semigroups

Author(s):  
Christian Berg ◽  
Khristo Boyadzhiev ◽  
Ralph Delaubenfels

AbstractWe construct a functional calculus, g → g(A), for functions, g, that are the sum of a Stieltjes function and a nonnegative operator monotone function, and unbounded linear operators, A, whose resolvent set contains (−∞, 0), with {‖r(r + A)−1‖ ¦ r > 0} bounded. For such functions g, we show that –g(A) generates a bounded holomorphic strongly continuous semigroup of angle θ, whenever –A does.We show that, for any Bernstein function f, − f(A) generates a bounded holomorphic strongly continuous semigroup of angle π/2, whenever − A does.We also prove some new results about the Bochner-Phillips functional calculus. We discuss the relationship between fractional powers and our construction.

1995 ◽  
Vol 47 (4) ◽  
pp. 744-785 ◽  
Author(s):  
Neal J. Fowler

AbstractGiven a strongly continuous semigroup of isometries ∪ acting on a Hilbert space ℋ, we construct an E0-semigroup α∪, the free E0-semigroup over ∪, acting on the algebra of all bounded linear operators on full Fock space over ℋ. We show how the semigroup αU⊗V can be regarded as the free product of α∪ and αV. In the case where U is pure of multiplicity n, the semigroup au, called the Free flow of rank n, is shown to be completely spatial with Arveson index +∞. We conclude that each of the free flows is cocycle conjugate to the CAR/CCR flow of rank +∞.


Author(s):  
Béla Sz.-Nagy

1. Let {Vi}i≥0 be a weakly (hence also strongly) continuous semigroup of (linear) contraction operators on a Hilbert space H, i.e. |Vt| ≤ 1 ( t ≥ 0). Let Z and W denote the corresponding infinitesimal generator and cogenerator, i.e.Z is in general non-bounded, but closed and densely defined, and W is a contraction operator (everywhere defined in H), such that 1 is not a proper value of W. Conversely, every contraction operator W not having the proper value 1 is the infinitesimal cogenerator of exactly one semigroup {Vi} of the above type; one has namelyin the sense of the functional calculus for contraction operators (4).


Author(s):  
D. E. Edmunds ◽  
W. D. Evans

This chapter is concerned with closable and closed operators in Hilbert spaces, especially with the special classes of symmetric, J-symmetric, accretive and sectorial operators. The Stone–von Neumann theory of extensions of symmetric operators is treated as a special case of results for compatible adjoint pairs of closed operators. Also discussed in detail is the stability of closedness and self-adjointness under perturbations. The abstract results are applied to operators defined by second-order differential expressions, and Sims’ generalization of the Weyl limit-point, limit-circle characterization for symmetric expressions to J-symmetric expressions is proved.


1990 ◽  
Vol 32 (3) ◽  
pp. 273-276 ◽  
Author(s):  
Muneo Chō

In this paper we shall examine the relationship between the numerical ranges and the spectra for semi-normal operators on uniformly smooth spaces.Let X be a complex Banach space. We denote by X* the dual space of X and by B(X) the space of all bounded linear operators on X. A linear functional F on B(X) is called state if ∥F∥ = F(I) = 1. When x ε X with ∥x∥ = 1, we denoteD(x) = {f ε X*:∥f∥ = f(x) = l}.


1995 ◽  
Vol 1 (3) ◽  
pp. 179-191 ◽  
Author(s):  
N. U. Ahmed ◽  
X. Xiang

In this paper we consider optimal control problem for infinite dimensional uncertain systems. Necessary conditions of optimality are presented under the assumption that the principal operator is the infinitesimal generator of a strongly continuous semigroup of linear operators in a reflexive Banach space. Further, a computational algorithm suitable for computing the optimal policies is also given.


1975 ◽  
Vol 12 (1) ◽  
pp. 23-25 ◽  
Author(s):  
Béla Bollobás ◽  
Stephan E. Eldridge

Giles and Joseph (Bull. Austral. Math. Soc. 11 (1974), 31–36), proved that the numerical range of an unbounded operator on a Banach space has a certain density property. They showed, in particular, that the numerical range of an unbounded operator on certain Banach spaces is dense in the scalar field. We prove that the numerical range of an unbounded operator on a Banach space is always dense in the scalar field.


Sign in / Sign up

Export Citation Format

Share Document