Primitive ideals with bounded approximate units in L1-algebras of exponential lie groups

Author(s):  
Mohammed El Bachir Bekka

AbstractLet G be an exponential Lie group. We study primitive ideals (i.e. kernels of irreducible *-representations of L1(G)), with bounded approximate units (b.a.u.). We prove a result relating the existence of b.a.u. in certain primitive ideals with the geometry of the corresponding Kirillov orbits. This yields for a solvable group of class 2, a characterization of the primitive ideals with b.a.u.

2008 ◽  
Vol 78 (2) ◽  
pp. 301-316
Author(s):  
DETLEV POGUNTKE

AbstractA nine-dimensional exponential Lie group G and a linear form ℓ on the Lie algebra of G are presented such that for all Pukanszky polarizations 𝔭 at ℓ the canonically associated unitary representation ρ=ρ(ℓ,𝔭) of G has the property that ρ(ℒ1(G)) does not contain any nonzero operator given by a compactly supported kernel function. This example shows that one of Leptin’s results is wrong, and it cannot be repaired.


2015 ◽  
Vol 151 (6) ◽  
pp. 1157-1188 ◽  
Author(s):  
Menny Aka ◽  
Emmanuel Breuillard ◽  
Lior Rosenzweig ◽  
Nicolas de Saxcé

A finitely generated subgroup ${\rm\Gamma}$ of a real Lie group $G$ is said to be Diophantine if there is ${\it\beta}>0$ such that non-trivial elements in the word ball $B_{{\rm\Gamma}}(n)$ centered at $1\in {\rm\Gamma}$ never approach the identity of $G$ closer than $|B_{{\rm\Gamma}}(n)|^{-{\it\beta}}$. A Lie group $G$ is said to be Diophantine if for every $k\geqslant 1$ a random $k$-tuple in $G$ generates a Diophantine subgroup. Semi-simple Lie groups are conjectured to be Diophantine but very little is proven in this direction. We give a characterization of Diophantine nilpotent Lie groups in terms of the ideal of laws of their Lie algebra. In particular we show that nilpotent Lie groups of class at most $5$, or derived length at most $2$, as well as rational nilpotent Lie groups are Diophantine. We also find that there are non-Diophantine nilpotent and solvable (non-nilpotent) Lie groups.


Author(s):  
A. A. Astaneh

AbstractIn this paper one more canonical method to construct the irreducible unitary representations of a connected, simply connected nilpotent Lie group is introduced. Although we used Kirillov' analysis to deduce this procedure, the method obtained differs from that of Kirillov's, in that one does not need to consider the codjoint representation of the group in the dual of its Lie algebra (in fact, neither does one need to consider the Lie algebra of the group, provided one knows certain connected subgroups and their characters). The method also differs from that of Mackey's as one only needs to induce characters to obtain all irreducible representations of the group.


2015 ◽  
Vol 6 (4) ◽  
Author(s):  
Detlev Poguntke

AbstractIt was one of great successes of Kirillov's orbit method to see that the unitary dual of an exponential Lie group is in bijective correspondence with the orbit space associated with the linear dual of the Lie algebra of the group in question. To show that this correspondence is an homeomorphism turned out to be unexpectedly difficult. Only in 1994 H. Leptin and J. Ludwig gave a proof using the notion of variable groups. In this article their proof in the case of completely solvable Lie group is reorganized, some “philosophy” and some new arguments are added. The purpose is to contribute to a better understanding of this proof.


2020 ◽  
Vol 32 (6) ◽  
pp. 1599-1619
Author(s):  
Diego Conti ◽  
Federico A. Rossi

AbstractWe introduce a systematic method to produce left-invariant, non-Ricci-flat Einstein metrics of indefinite signature on nice nilpotent Lie groups. On a nice nilpotent Lie group, we give a simple algebraic characterization of non-Ricci-flat left-invariant Einstein metrics in both the class of metrics for which the nice basis is orthogonal and a more general class associated to order two permutations of the nice basis. We obtain classifications in dimension 8 and, under the assumption that the root matrix is surjective, dimension 9; moreover, we prove that Einstein nilpotent Lie groups of nonzero scalar curvature exist in every dimension \geq 8.


2003 ◽  
Vol 212 (1) ◽  
pp. 133-156
Author(s):  
Jean Ludwig ◽  
Salma Mint Elhacen ◽  
Carine Molitor-Braun

Sign in / Sign up

Export Citation Format

Share Document