scholarly journals Diophantine properties of nilpotent Lie groups

2015 ◽  
Vol 151 (6) ◽  
pp. 1157-1188 ◽  
Author(s):  
Menny Aka ◽  
Emmanuel Breuillard ◽  
Lior Rosenzweig ◽  
Nicolas de Saxcé

A finitely generated subgroup ${\rm\Gamma}$ of a real Lie group $G$ is said to be Diophantine if there is ${\it\beta}>0$ such that non-trivial elements in the word ball $B_{{\rm\Gamma}}(n)$ centered at $1\in {\rm\Gamma}$ never approach the identity of $G$ closer than $|B_{{\rm\Gamma}}(n)|^{-{\it\beta}}$. A Lie group $G$ is said to be Diophantine if for every $k\geqslant 1$ a random $k$-tuple in $G$ generates a Diophantine subgroup. Semi-simple Lie groups are conjectured to be Diophantine but very little is proven in this direction. We give a characterization of Diophantine nilpotent Lie groups in terms of the ideal of laws of their Lie algebra. In particular we show that nilpotent Lie groups of class at most $5$, or derived length at most $2$, as well as rational nilpotent Lie groups are Diophantine. We also find that there are non-Diophantine nilpotent and solvable (non-nilpotent) Lie groups.

2020 ◽  
Vol 32 (6) ◽  
pp. 1599-1619
Author(s):  
Diego Conti ◽  
Federico A. Rossi

AbstractWe introduce a systematic method to produce left-invariant, non-Ricci-flat Einstein metrics of indefinite signature on nice nilpotent Lie groups. On a nice nilpotent Lie group, we give a simple algebraic characterization of non-Ricci-flat left-invariant Einstein metrics in both the class of metrics for which the nice basis is orthogonal and a more general class associated to order two permutations of the nice basis. We obtain classifications in dimension 8 and, under the assumption that the root matrix is surjective, dimension 9; moreover, we prove that Einstein nilpotent Lie groups of nonzero scalar curvature exist in every dimension \geq 8.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Viviana del Barco ◽  
Andrei Moroianu

Abstract We study left-invariant conformal Killing 2- or 3-forms on simply connected 2-step nilpotent Riemannian Lie groups. We show that if the center of the group is of dimension greater than or equal to 4, then every such form is automatically coclosed (i.e. it is a Killing form). In addition, we prove that the only Riemannian 2-step nilpotent Lie groups with center of dimension at most 3 and admitting left-invariant non-coclosed conformal Killing 2- and 3-forms are the following: The Heisenberg Lie groups and their trivial 1-dimensional extensions, endowed with any left-invariant metric, and the simply connected Lie group corresponding to the free 2-step nilpotent Lie algebra on 3 generators, with a particular 1-parameter family of metrics. The explicit description of the space of conformal Killing 2- and 3-forms is provided in each case.


2007 ◽  
Vol 18 (07) ◽  
pp. 783-795 ◽  
Author(s):  
TARO YOSHINO

For a nilpotent Lie group G and its closed subgroup L, Lipsman [13] conjectured that the L-action on some homogeneous space of G is proper in the sense of Palais if and only if the action is free. Nasrin [14] proved this conjecture assuming that G is a 2-step nilpotent Lie group. However, Lipsman's conjecture fails for the 4-step nilpotent case. This paper gives an affirmative solution to Lipsman's conjecture for the 3-step nilpotent case.


Author(s):  
Günter Harder

This chapter shows that certain classes of Harish-Chandra modules have in a natural way a structure over ℤ. The Lie group is replaced by a split reductive group scheme G/ℤ, its Lie algebra is denoted by 𝖌ℤ. On the group scheme G/ℤ there is a Cartan involution 𝚯 that acts by t ↦ t −1 on the split maximal torus. The fixed points of G/ℤ under 𝚯 is a flat group scheme 𝒦/ℤ. A Harish-Chandra module over ℤ is a ℤ-module 𝒱 that comes with an action of the Lie algebra 𝖌ℤ, an action of the group scheme 𝒦, and some compatibility conditions is required between these two actions. Finally, 𝒦-finiteness is also required, which is that 𝒱 is a union of finitely generated ℤ modules 𝒱I that are 𝒦-invariant. The definitions imitate the definition of a Harish-Chandra modules over ℝ or over ℂ.


2019 ◽  
Vol 31 (4) ◽  
pp. 815-842
Author(s):  
Luiz A. B. San Martin ◽  
Laercio J. Santos

Abstract Let G be a noncompact semi-simple Lie group with Iwasawa decomposition {G=KAN} . For a semigroup {S\subset G} with nonempty interior we find a domain of convergence of the Helgason–Laplace transform {I_{S}(\lambda,u)=\int_{S}e^{\lambda(\mathsf{a}(g,u))}\,dg} , where dg is the Haar measure of G, {u\in K} , {\lambda\in\mathfrak{a}^{\ast}} , {\mathfrak{a}} is the Lie algebra of A and {gu=ke^{\mathsf{a}(g,u)}n\in KAN} . The domain is given in terms of a flag manifold of G written {\mathbb{F}_{\Theta(S)}} called the flag type of S, where {\Theta(S)} is a subset of the simple system of roots. It is proved that {I_{S}(\lambda,u)<\infty} if λ belongs to a convex cone defined from {\Theta(S)} and {u\in\pi^{-1}(\mathcal{D}_{\Theta(S)}(S))} , where {\mathcal{D}_{\Theta(S)}(S)\subset\mathbb{F}_{\Theta(S)}} is a B-convex set and {\pi:K\rightarrow\mathbb{F}_{\Theta(S)}} is the natural projection. We prove differentiability of {I_{S}(\lambda,u)} and apply the results to construct of a Riemannian metric in {\mathcal{D}_{\Theta(S)}(S)} invariant by the group {S\cap S^{-1}} of units of S.


Author(s):  
Tobias Diez ◽  
Bas Janssens ◽  
Karl-Hermann Neeb ◽  
Cornelia Vizman

Abstract Let $M$ be a manifold with a closed, integral $(k+1)$-form $\omega $, and let $G$ be a Fréchet–Lie group acting on $(M,\omega )$. As a generalization of the Kostant–Souriau extension for symplectic manifolds, we consider a canonical class of central extensions of ${\mathfrak{g}}$ by ${\mathbb{R}}$, indexed by $H^{k-1}(M,{\mathbb{R}})^*$. We show that the image of $H_{k-1}(M,{\mathbb{Z}})$ in $H^{k-1}(M,{\mathbb{R}})^*$ corresponds to a lattice of Lie algebra extensions that integrate to smooth central extensions of $G$ by the circle group ${\mathbb{T}}$. The idea is to represent a class in $H_{k-1}(M,{\mathbb{Z}})$ by a weighted submanifold $(S,\beta )$, where $\beta $ is a closed, integral form on $S$. We use transgression of differential characters from $ S$ and $ M $ to the mapping space $ C^\infty (S, M) $ and apply the Kostant–Souriau construction on $ C^\infty (S, M) $.


2019 ◽  
Vol 6 (1) ◽  
pp. 170-193 ◽  
Author(s):  
Diego Conti ◽  
Federico A. Rossi

AbstractThis is partly an expository paper, where the authors’ work on pseudoriemannian Einstein metrics on nilpotent Lie groups is reviewed. A new criterion is given for the existence of a diagonal Einstein metric on a nice nilpotent Lie group. Classifications of special classes of Ricci-˛at metrics on nilpotent Lie groups of dimension [eight.tf] are obtained. Some related open questions are presented.


2005 ◽  
Vol 02 (01) ◽  
pp. 111-125 ◽  
Author(s):  
PAOLO ANIELLO

We show that, given a matrix Lie group [Formula: see text] and its Lie algebra [Formula: see text], a 1-parameter subgroup of [Formula: see text] whose generator is the sum of an unperturbed matrix Â0 and an analytic perturbation Â♢(λ) can be mapped — under suitable conditions — by a similarity transformation depending analytically on the perturbative parameter λ, onto a 1-parameter subgroup of [Formula: see text] generated by a matrix [Formula: see text] belonging to the centralizer of Â0 in [Formula: see text]. Both the similarity transformation and the matrix [Formula: see text] can be determined perturbatively, hence allowing a very convenient perturbative expansion of the original 1-parameter subgroup.


2016 ◽  
Vol 16 (2) ◽  
Author(s):  
Viviana del Barco

AbstractWe study the geodesic orbit property for nilpotent Lie groups N endowed with a pseudo-Riemannian left-invariant metric. We consider this property with respect to different groups acting by isometries. When N acts on itself by left-translations we show that it is a geodesic orbit space if and only if the metric is bi-invariant. Assuming N is 2-step nilpotent and with non-degenerate center we give algebraic conditions on the Lie algebra n of N which imply that every geodesic is the orbit of a one-parameter subgroup of N.Auto(N). In addition we present an example of an almost g.o. space such that for null homogeneous geodesics, the natural parameter of the orbit is not always the affine parameter of the geodesic.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jonas Deré ◽  
Marcos Origlia

Abstract Every simply connected and connected solvable Lie group 𝐺 admits a simply transitive action on a nilpotent Lie group 𝐻 via affine transformations. Although the existence is guaranteed, not much is known about which Lie groups 𝐺 can act simply transitively on which Lie groups 𝐻. So far, the focus was mainly on the case where 𝐺 is also nilpotent, leading to a characterization depending only on the corresponding Lie algebras and related to the notion of post-Lie algebra structures. This paper studies two different aspects of this problem. First, we give a method to check whether a given action ρ : G → Aff ⁡ ( H ) \rho\colon G\to\operatorname{Aff}(H) is simply transitive by looking only at the induced morphism φ : g → aff ⁡ ( h ) \varphi\colon\mathfrak{g}\to\operatorname{aff}(\mathfrak{h}) between the corresponding Lie algebras. Secondly, we show how to check whether a given solvable Lie group 𝐺 acts simply transitively on a given nilpotent Lie group 𝐻, again by studying properties of the corresponding Lie algebras. The main tool for both methods is the semisimple splitting of a solvable Lie algebra and its relation to the algebraic hull, which we also define on the level of Lie algebras. As an application, we give a full description of the possibilities for simply transitive actions up to dimension 4.


Sign in / Sign up

Export Citation Format

Share Document