scholarly journals Justifying answer sets using argumentation

2015 ◽  
Vol 16 (1) ◽  
pp. 59-110 ◽  
Author(s):  
CLAUDIA SCHULZ ◽  
FRANCESCA TONI

AbstractAn answer set is a plain set of literals which has no further structure that would explain why certain literals are part of it and why others are not. We show how argumentation theory can help to explain why a literal is or is not contained in a given answer set by defining two justification methods, both of which make use of the correspondence between answer sets of a logic program and stable extensions of the assumption-based argumentation (ABA) framework constructed from the same logic program.Attack Treesjustify a literal in argumentation-theoretic terms, i.e. using arguments and attacks between them, whereasABA-Based Answer Set Justificationsexpress the same justification structure in logic programming terms, that is using literals and their relationships. Interestingly, an ABA-Based Answer Set Justification corresponds to an admissible fragment of the answer set in question, and an Attack Tree corresponds to an admissible fragment of the stable extension corresponding to this answer set.

2019 ◽  
Vol 19 (5-6) ◽  
pp. 688-704
Author(s):  
GIOVANNI AMENDOLA ◽  
FRANCESCO RICCA

AbstractIn the last years, abstract argumentation has met with great success in AI, since it has served to capture several non-monotonic logics for AI. Relations between argumentation framework (AF) semantics and logic programming ones are investigating more and more. In particular, great attention has been given to the well-known stable extensions of an AF, that are closely related to the answer sets of a logic program. However, if a framework admits a small incoherent part, no stable extension can be provided. To overcome this shortcoming, two semantics generalizing stable extensions have been studied, namely semi-stable and stage. In this paper, we show that another perspective is possible on incoherent AFs, called paracoherent extensions, as they have a counterpart in paracoherent answer set semantics. We compare this perspective with semi-stable and stage semantics, by showing that computational costs remain unchanged, and moreover an interesting symmetric behaviour is maintained.


2019 ◽  
Vol 19 (04) ◽  
pp. 603-628 ◽  
Author(s):  
FRANCESCO CALIMERI ◽  
SIMONA PERRI ◽  
JESSICA ZANGARI

AbstractAnswer Set Programming (ASP) is a purely declarative formalism developed in the field of logic programming and non-monotonic reasoning: computational problems are encoded by logic programs whose answer sets, corresponding to solutions, are computed by an ASP system. Different, semantically equivalent, programs can be defined for the same problem; however, performance of systems evaluating them might significantly vary. We propose an approach for automatically transforming an input logic program into an equivalent one that can be evaluated more efficiently. One can make use of existing tree-decomposition techniques for rewriting selected rules into a set of multiple ones; the idea is to guide and adaptively apply them on the basis of proper new heuristics, to obtain a smart rewriting algorithm to be integrated into an ASP system. The method is rather general: it can be adapted to any system and implement different preference policies. Furthermore, we define a set of new heuristics tailored at optimizing grounding, one of the main phases of the ASP computation; we use them in order to implement the approach into the ASP systemDLV, in particular into its grounding subsystemℐ-DLV, and carry out an extensive experimental activity for assessing the impact of the proposal.


AI Magazine ◽  
2016 ◽  
Vol 37 (3) ◽  
pp. 25-32 ◽  
Author(s):  
Benjamin Kaufmann ◽  
Nicola Leone ◽  
Simona Perri ◽  
Torsten Schaub

Answer set programming is a declarative problem solving paradigm that rests upon a workflow involving modeling, grounding, and solving. While the former is described by Gebser and Schaub (2016), we focus here on key issues in grounding, or how to systematically replace object variables by ground terms in a effective way, and solving, or how to compute the answer sets of a propositional logic program obtained by grounding.


2009 ◽  
pp. 2261-2267
Author(s):  
Fernando Zacarías Flores ◽  
Dionicio Zacarías Flores ◽  
Rosalba Cuapa Canto ◽  
Luis Miguel Guzmán Muñoz

Updates, is a central issue in relational databases and knowledge databases. In the last years, it has been well studied in the non-monotonic reasoning paradigm. Several semantics for logic program updates have been proposed (Brewka, Dix, & Knonolige 1997), (De Schreye, Hermenegildo, & Pereira, 1999) (Katsumo & Mendelzon, 1991). However, recently a set of proposals has been characterized to propose mechanisms of updates based on logic and logic programming. All these mechanisms are built on semantics based on structural properties (Eiter, Fink, Sabattini & Thompits, 2000) (Leite, 2002) (Banti, Alferes & Brogi, 2003) (Zacarias, 2005). Furthermore, all these semantic ones coincide in considering the AGM proposal as the standard model in the update theory, for their wealth in properties. The AGM approach, introduced in (Alchourron, Gardenfors & Makinson, 1985) is the dominating paradigm in the area, but in the context of monotonic logic. All these proposals analyze and reinterpret the AGM postulates under the Answer Set Programming (ASP) such as (Eiter, Fink, Sabattini & Thompits, 2000). However, the majority of the adapted AGM and update postulates are violated by update programs, as shown in(De Schreye, Hermenegildo, & Pereira, 1999).


2018 ◽  
Vol 19 (2) ◽  
pp. 262-289 ◽  
Author(s):  
ELIAS MARCOPOULOS ◽  
YUANLIN ZHANG

AbstractRecent progress in logic programming (e.g. the development of the answer set programming (ASP) paradigm) has made it possible to teach it to general undergraduate and even middle/high school students. Given the limited exposure of these students to computer science, the complexity of downloading, installing, and using tools for writing logic programs could be a major barrier for logic programming to reach a much wider audience. We developed onlineSPARC, an online ASP environment with a self-contained file system and a simple interface. It allows users to type/edit logic programs and perform several tasks over programs, including asking a query to a program, getting the answer sets of a program, and producing a drawing/animation based on the answer sets of a program.


Author(s):  
Fernando Zacarías Flores ◽  
Dionicio Zacarías Flores ◽  
Rosalba Cuapa Canto ◽  
Luis Miguel Guzmán Muñoz

Updates, is a central issue in relational databases and knowledge databases. In the last years, it has been well studied in the non-monotonic reasoning paradigm. Several semantics for logic program updates have been proposed (Brewka, Dix, & Knonolige 1997), (De Schreye, Hermenegildo, & Pereira, 1999) (Katsumo & Mendelzon, 1991). However, recently a set of proposals has been characterized to propose mechanisms of updates based on logic and logic programming. All these mechanisms are built on semantics based on structural properties (Eiter, Fink, Sabattini & Thompits, 2000) (Leite, 2002) (Banti, Alferes & Brogi, 2003) (Zacarias, 2005). Furthermore, all these semantic ones coincide in considering the AGM proposal as the standard model in the update theory, for their wealth in properties. The AGM approach, introduced in (Alchourron, Gardenfors & Makinson, 1985) is the dominating paradigm in the area, but in the context of monotonic logic. All these proposals analyze and reinterpret the AGM postulates under the Answer Set Programming (ASP) such as (Eiter, Fink, Sabattini & Thompits, 2000). However, the majority of the adapted AGM and update postulates are violated by update programs, as shown in (De Schreye, Hermenegildo, & Pereira, 1999).


2010 ◽  
Vol 10 (4-6) ◽  
pp. 565-580 ◽  
Author(s):  
JAMES P. DELGRANDE

AbstractAn approach to the revision of logic programs under the answer set semantics is presented. For programs P and Q, the goal is to determine the answer sets that correspond to the revision of P by Q, denoted P * Q. A fundamental principle of classical (AGM) revision, and the one that guides the approach here, is the success postulate. In AGM revision, this stipulates that α ∈ K * α. By analogy with the success postulate, for programs P and Q, this means that the answer sets of Q will in some sense be contained in those of P * Q. The essential idea is that for P * Q, a three-valued answer set for Q, consisting of positive and negative literals, is first determined. The positive literals constitute a regular answer set, while the negated literals make up a minimal set of naf literals required to produce the answer set from Q. These literals are propagated to the program P, along with those rules of Q that are not decided by these literals. The approach differs from work in update logic programs in two main respects. First, we ensure that the revising logic program has higher priority, and so we satisfy the success postulate; second, for the preference implicit in a revision P * Q, the program Q as a whole takes precedence over P, unlike update logic programs, since answer sets of Q are propagated to P. We show that a core group of the AGM postulates are satisfied, as are the postulates that have been proposed for update logic programs.


2019 ◽  
Vol 19 (5-6) ◽  
pp. 891-907
Author(s):  
MARIO ALVIANO ◽  
CARMINE DODARO ◽  
JOHANNES K. FICHTE ◽  
MARKUS HECHER ◽  
TOBIAS PHILIPP ◽  
...  

AbstractAnswer Set Programming (ASP) solvers are highly-tuned and complex procedures that implicitly solve the consistency problem, i.e., deciding whether a logic program admits an answer set. Verifying whether a claimed answer set is formally a correct answer set of the program can be decided in polynomial time for (normal) programs. However, it is far from immediate to verify whether a program that is claimed to be inconsistent, indeed does not admit any answer sets. In this paper, we address this problem and develop the new proof format ASP-DRUPE for propositional, disjunctive logic programs, including weight and choice rules. ASP-DRUPE is based on the Reverse Unit Propagation (RUP) format designed for Boolean satisfiability. We establish correctness of ASP-DRUPE and discuss how to integrate it into modern ASP solvers. Later, we provide an implementation of ASP-DRUPE into the wasp solver for normal logic programs.


2011 ◽  
Vol 13 (1) ◽  
pp. 33-70 ◽  
Author(s):  
JUAN CARLOS NIEVES ◽  
MAURICIO OSORIO ◽  
ULISES CORTÉS

AbstractIn this paper, a possibilistic disjunctive logic programming approach for modeling uncertain, incomplete, and inconsistent information is defined. This approach introduces the use of possibilistic disjunctive clauses, which are able to capture incomplete information and states of a knowledge base at the same time. By considering a possibilistic logic program as a possibilistic logic theory, a construction of a possibilistic logic programming semantic based on answer sets and the proof theory of possibilistic logic is defined. It shows that this possibilistic semantics for disjunctive logic programs can be characterized by a fixed-point operator. It is also shown that the suggested possibilistic semantics can be computed by a resolution algorithm and the consideration of optimal refutations from a possibilistic logic theory. In order to manage inconsistent possibilistic logic programs, a preference criterion between inconsistent possibilistic models is defined. In addition, the approach of cuts for restoring consistency of an inconsistent possibilistic knowledge base is adopted. The approach is illustrated in a medical scenario.


2007 ◽  
Vol 7 (6) ◽  
pp. 697-744 ◽  
Author(s):  
TOMI JANHUNEN ◽  
EMILIA OIKARINEN

AbstractIn answer set programming (ASP), a problem at hand is solved by (i) writing a logic program whose answer sets correspond to the solutions of the problem, and by (ii) computing the answer sets of the program using ananswer set solveras a search engine. Typically, a programmer creates a series of gradually improving logic programs for a particular problem when optimizing program length and execution time on a particular solver. This leads the programmer to a meta-level problem of ensuring that the programs are equivalent, i.e., they give rise to the same answer sets. To ease answer set programming at methodological level, we propose a translation-based method for verifying the equivalence of logic programs. The basic idea is to translate logic programsPandQunder consideration into a single logic program EQT(P,Q) whose answer sets (if such exist) yield counter-examples to the equivalence ofPandQ. The method is developed here in a slightly more general setting by taking thevisibilityof atoms properly into account when comparing answer sets. The translation-based approach presented in the paper has been implemented as a translator calledlpeqthat enables the verification of weak equivalence within thesmodelssystem using the same search engine as for the search of models. Our experiments withlpeqandsmodelssuggest that establishing the equivalence of logic programs in this way is in certain cases much faster than naive cross-checking of answer sets.


Sign in / Sign up

Export Citation Format

Share Document