A Roadmap on Updates

2009 ◽  
pp. 2261-2267
Author(s):  
Fernando Zacarías Flores ◽  
Dionicio Zacarías Flores ◽  
Rosalba Cuapa Canto ◽  
Luis Miguel Guzmán Muñoz

Updates, is a central issue in relational databases and knowledge databases. In the last years, it has been well studied in the non-monotonic reasoning paradigm. Several semantics for logic program updates have been proposed (Brewka, Dix, & Knonolige 1997), (De Schreye, Hermenegildo, & Pereira, 1999) (Katsumo & Mendelzon, 1991). However, recently a set of proposals has been characterized to propose mechanisms of updates based on logic and logic programming. All these mechanisms are built on semantics based on structural properties (Eiter, Fink, Sabattini & Thompits, 2000) (Leite, 2002) (Banti, Alferes & Brogi, 2003) (Zacarias, 2005). Furthermore, all these semantic ones coincide in considering the AGM proposal as the standard model in the update theory, for their wealth in properties. The AGM approach, introduced in (Alchourron, Gardenfors & Makinson, 1985) is the dominating paradigm in the area, but in the context of monotonic logic. All these proposals analyze and reinterpret the AGM postulates under the Answer Set Programming (ASP) such as (Eiter, Fink, Sabattini & Thompits, 2000). However, the majority of the adapted AGM and update postulates are violated by update programs, as shown in(De Schreye, Hermenegildo, & Pereira, 1999).

Author(s):  
Fernando Zacarías Flores ◽  
Dionicio Zacarías Flores ◽  
Rosalba Cuapa Canto ◽  
Luis Miguel Guzmán Muñoz

Updates, is a central issue in relational databases and knowledge databases. In the last years, it has been well studied in the non-monotonic reasoning paradigm. Several semantics for logic program updates have been proposed (Brewka, Dix, & Knonolige 1997), (De Schreye, Hermenegildo, & Pereira, 1999) (Katsumo & Mendelzon, 1991). However, recently a set of proposals has been characterized to propose mechanisms of updates based on logic and logic programming. All these mechanisms are built on semantics based on structural properties (Eiter, Fink, Sabattini & Thompits, 2000) (Leite, 2002) (Banti, Alferes & Brogi, 2003) (Zacarias, 2005). Furthermore, all these semantic ones coincide in considering the AGM proposal as the standard model in the update theory, for their wealth in properties. The AGM approach, introduced in (Alchourron, Gardenfors & Makinson, 1985) is the dominating paradigm in the area, but in the context of monotonic logic. All these proposals analyze and reinterpret the AGM postulates under the Answer Set Programming (ASP) such as (Eiter, Fink, Sabattini & Thompits, 2000). However, the majority of the adapted AGM and update postulates are violated by update programs, as shown in (De Schreye, Hermenegildo, & Pereira, 1999).


2019 ◽  
Vol 19 (04) ◽  
pp. 603-628 ◽  
Author(s):  
FRANCESCO CALIMERI ◽  
SIMONA PERRI ◽  
JESSICA ZANGARI

AbstractAnswer Set Programming (ASP) is a purely declarative formalism developed in the field of logic programming and non-monotonic reasoning: computational problems are encoded by logic programs whose answer sets, corresponding to solutions, are computed by an ASP system. Different, semantically equivalent, programs can be defined for the same problem; however, performance of systems evaluating them might significantly vary. We propose an approach for automatically transforming an input logic program into an equivalent one that can be evaluated more efficiently. One can make use of existing tree-decomposition techniques for rewriting selected rules into a set of multiple ones; the idea is to guide and adaptively apply them on the basis of proper new heuristics, to obtain a smart rewriting algorithm to be integrated into an ASP system. The method is rather general: it can be adapted to any system and implement different preference policies. Furthermore, we define a set of new heuristics tailored at optimizing grounding, one of the main phases of the ASP computation; we use them in order to implement the approach into the ASP systemDLV, in particular into its grounding subsystemℐ-DLV, and carry out an extensive experimental activity for assessing the impact of the proposal.


Author(s):  
Fernando Zacarías Flores ◽  
Dionicio Zacarías Flores ◽  
Rosalba Cuapa Canto ◽  
Luis Miguel Guzmán Muñoz

The agent paradigm has recently increased its influence in the research and development of computational logicbased systems. A clear and correct specification is made through Logic Programming (LP) and Non-nomotonic Reasoning that have been brought (back) to the spotlight. Also, the recent significant improvements in the efficiency of LP implementations for Non-monotonic Reasoning (De Schreye, Hermenegildo & Pereira, 1999) have helped to this resurgence. However, the agents need update constantly their knowledge base and, particularly the intentional base (rules) such that our agent has the ability to reacting to changes in dynamic environments is of crucial importance within the context of software agents. Such feature should correspond to a deliberative rational behavior wanted for our agents. The quality of the service that an agent offers is based on the form in which an agent combines rationality and reactivity. A reactive agent can offer well evaluated recommendations but, this response is based on outdated information, while a rational behavior may generate recommendations based on the most recently acquired information. So, we are interested in developing environment-aware agents. For this reason, is very important to have an update process for agents, i.e., that it allows us to design agents with its rational component. Over recent years, several semantics for logic program updates have been proposed (Brewka, Dix, & Knonolige 1997) (De Schreye, Hermenegildo, & Pereira, 1999) (Katsumo & Mendelzon, 1991). All these semantic ones coincide in considering the AGM proposal as the standard model in the update theory, for their wealth in properties. The AGM approach, introduced in (Alchourron, Gardenfors & Makinson, 1985) is the dominating paradigm in the area, but in the context of monotonic logic. All these proposals analyze and reinterpret the AGM postulates under the Answer Set Programming (ASP) such as (Eiter, Fink, Sabattini & Thompits, 2000). However, the majority of the adapted AGM and update postulates are violated by update programs, as shown in (De Schreye, Hermenegildo, & Pereira, 1999). For this reason, we have been working in finding properties that our update operator satisfies (Osorio & Zacarías, 2003) (Zacarías & Osorio, 2005) (Arrazola & Zacarias, 2005). Our purpose is to build a semantics based on structural properties. This is our main objective in the update theory. In (De Schreye, Hermenegildo, & Pereira, 1999) (Osorio & Zacarias, 2003) (Zacarías, Osorio & Arrazola, 2005) (Zacarias, 2005) the authors present a set of properties that the update operator satisfies. In this paper we continue with this same research line presenting a novel proposal with the aim to enrich the update theory that we have begun in (Osorio & Zacarias, 2003) (Zacarías, Osorio & Arrazola, 2005) (Zacarias, 2005). This novel proposal contributes with two benefits. First, we conserve many of the properties presented in previous works (Osorio & Zacarias, 2003) (Zacarías, Osorio & Arrazola, 2005) (Zacarias, 2005), such as: Weak Irrelevance of Syntax (WIS). This property is similar to one postulate proposed by AGM, but in this case for nonmonotonic logic and under Answer Set Programming (ASP) introduced and defined by (Gelfond & Lifschitz, 1988).


AI Magazine ◽  
2016 ◽  
Vol 37 (3) ◽  
pp. 25-32 ◽  
Author(s):  
Benjamin Kaufmann ◽  
Nicola Leone ◽  
Simona Perri ◽  
Torsten Schaub

Answer set programming is a declarative problem solving paradigm that rests upon a workflow involving modeling, grounding, and solving. While the former is described by Gebser and Schaub (2016), we focus here on key issues in grounding, or how to systematically replace object variables by ground terms in a effective way, and solving, or how to compute the answer sets of a propositional logic program obtained by grounding.


Author(s):  
Tobias Kaminski ◽  
Thomas Eiter ◽  
Katsumi Inoue

Meta-Interpretive Learning (MIL) is a recent approach for Inductive Logic Programming (ILP) implemented in Prolog. Alternatively, MIL-problems can be solved by using Answer Set Programming (ASP), which may result in performance gains due to efficient conflict propagation. However, a straightforward MIL-encoding results in a huge size of the ground program and search space. To address these challenges, we encode MIL in the HEX-extension of ASP, which mitigates grounding issues, and we develop novel pruning techniques.


2018 ◽  
Vol 19 (2) ◽  
pp. 262-289 ◽  
Author(s):  
ELIAS MARCOPOULOS ◽  
YUANLIN ZHANG

AbstractRecent progress in logic programming (e.g. the development of the answer set programming (ASP) paradigm) has made it possible to teach it to general undergraduate and even middle/high school students. Given the limited exposure of these students to computer science, the complexity of downloading, installing, and using tools for writing logic programs could be a major barrier for logic programming to reach a much wider audience. We developed onlineSPARC, an online ASP environment with a self-contained file system and a simple interface. It allows users to type/edit logic programs and perform several tasks over programs, including asking a query to a program, getting the answer sets of a program, and producing a drawing/animation based on the answer sets of a program.


2019 ◽  
Vol 19 (5-6) ◽  
pp. 688-704
Author(s):  
GIOVANNI AMENDOLA ◽  
FRANCESCO RICCA

AbstractIn the last years, abstract argumentation has met with great success in AI, since it has served to capture several non-monotonic logics for AI. Relations between argumentation framework (AF) semantics and logic programming ones are investigating more and more. In particular, great attention has been given to the well-known stable extensions of an AF, that are closely related to the answer sets of a logic program. However, if a framework admits a small incoherent part, no stable extension can be provided. To overcome this shortcoming, two semantics generalizing stable extensions have been studied, namely semi-stable and stage. In this paper, we show that another perspective is possible on incoherent AFs, called paracoherent extensions, as they have a counterpart in paracoherent answer set semantics. We compare this perspective with semi-stable and stage semantics, by showing that computational costs remain unchanged, and moreover an interesting symmetric behaviour is maintained.


2015 ◽  
Vol 16 (1) ◽  
pp. 59-110 ◽  
Author(s):  
CLAUDIA SCHULZ ◽  
FRANCESCA TONI

AbstractAn answer set is a plain set of literals which has no further structure that would explain why certain literals are part of it and why others are not. We show how argumentation theory can help to explain why a literal is or is not contained in a given answer set by defining two justification methods, both of which make use of the correspondence between answer sets of a logic program and stable extensions of the assumption-based argumentation (ABA) framework constructed from the same logic program.Attack Treesjustify a literal in argumentation-theoretic terms, i.e. using arguments and attacks between them, whereasABA-Based Answer Set Justificationsexpress the same justification structure in logic programming terms, that is using literals and their relationships. Interestingly, an ABA-Based Answer Set Justification corresponds to an admissible fragment of the answer set in question, and an Attack Tree corresponds to an admissible fragment of the stable extension corresponding to this answer set.


2014 ◽  
Vol 50 ◽  
pp. 31-70 ◽  
Author(s):  
Y. Wang ◽  
Y. Zhang ◽  
Y. Zhou ◽  
M. Zhang

The ability of discarding or hiding irrelevant information has been recognized as an important feature for knowledge based systems, including answer set programming. The notion of strong equivalence in answer set programming plays an important role for different problems as it gives rise to a substitution principle and amounts to knowledge equivalence of logic programs. In this paper, we uniformly propose a semantic knowledge forgetting, called HT- and FLP-forgetting, for logic programs under stable model and FLP-stable model semantics, respectively. Our proposed knowledge forgetting discards exactly the knowledge of a logic program which is relevant to forgotten variables. Thus it preserves strong equivalence in the sense that strongly equivalent logic programs will remain strongly equivalent after forgetting the same variables. We show that this semantic forgetting result is always expressible; and we prove a representation theorem stating that the HT- and FLP-forgetting can be precisely characterized by Zhang-Zhou's four forgetting postulates under the HT- and FLP-model semantics, respectively. We also reveal underlying connections between the proposed forgetting and the forgetting of propositional logic, and provide complexity results for decision problems in relation to the forgetting. An application of the proposed forgetting is also considered in a conflict solving scenario.


Author(s):  
WOLFGANG FABER ◽  
MICHAEL MORAK ◽  
LUKÁŠ CHRPA

Abstract In the context of planning and reasoning about actions and change, we call an action reversible when its effects can be reverted by applying other actions, returning to the original state. Renewed interest in this area has led to several results in the context of the PDDL language, widely used for describing planning tasks. In this paper, we propose several solutions to the computational problem of deciding the reversibility of an action. In particular, we leverage an existing translation from PDDL to Answer Set Programming (ASP), and then use several different encodings to tackle the problem of action reversibility for the STRIPS fragment of PDDL. For these, we use ASP, as well as Epistemic Logic Programming (ELP), an extension of ASP with epistemic operators, and compare and contrast their strengths and weaknesses.


Sign in / Sign up

Export Citation Format

Share Document