scholarly journals PINNING ON A DEFECT LINE: CHARACTERIZATION OF MARGINAL DISORDER RELEVANCE AND SHARP ASYMPTOTICS FOR THE CRITICAL POINT SHIFT

2016 ◽  
Vol 17 (2) ◽  
pp. 305-346 ◽  
Author(s):  
Quentin Berger ◽  
Hubert Lacoin

The effect of disorder for pinning models is a subject which has attracted much attention in theoretical physics and rigorous mathematical physics. A peculiar point of interest is the question of coincidence of the quenched and annealed critical point for a small amount of disorder. The question has been mathematically settled in most cases in the last few years, giving in particular a rigorous validation of the Harris criterion on disorder relevance. However, the marginal case, where the return probability exponent is equal to $1/2$, that is, where the interarrival law of the renewal process is given by $\text{K}(n)=n^{-3/2}\unicode[STIX]{x1D719}(n)$ where $\unicode[STIX]{x1D719}$ is a slowly varying function, has been left partially open. In this paper, we give a complete answer to the question by proving a simple necessary and sufficient criterion on the return probability for disorder relevance, which confirms earlier predictions from the literature. Moreover, we also provide sharp asymptotics on the critical point shift: in the case of the pinning of a one-dimensional simple random walk, the shift of the critical point satisfies the following high temperature asymptotics $$\begin{eqnarray}\lim _{\unicode[STIX]{x1D6FD}\rightarrow 0}\unicode[STIX]{x1D6FD}^{2}\log h_{c}(\unicode[STIX]{x1D6FD})=-\frac{\unicode[STIX]{x1D70B}}{2}.\end{eqnarray}$$ This gives a rigorous proof to a claim of Derrida, Hakim and Vannimenus (J. Stat. Phys. 66 (1992), 1189–1213).

Author(s):  
Jaume Giné ◽  
Maite Grau

We consider the two-dimensional autonomous systems of differential equations of the form where P(x,y) and Q(x,y) are analytic functions of order greater than or equal to 2. These systems have a focus at the origin if λ ≠ 0, and have either a centre or a weak focus if λ = 0. In this work we study the necessary and sufficient conditions for the existence of an isochronous critical point at the origin. Our result is, to the best of our knowledge, original when applied to weak foci and gives known results when applied to strong foci or to centres.


Author(s):  
Jaume Giné ◽  
Maite Grau

We consider the two-dimensional autonomous systems of differential equations of the form where P(x,y) and Q(x,y) are analytic functions of order greater than or equal to 2. These systems have a focus at the origin if λ ≠ 0, and have either a centre or a weak focus if λ = 0. In this work we study the necessary and sufficient conditions for the existence of an isochronous critical point at the origin. Our result is, to the best of our knowledge, original when applied to weak foci and gives known results when applied to strong foci or to centres.


1994 ◽  
Vol 36 (1) ◽  
pp. 77-80 ◽  
Author(s):  
Leung-Fu Cheung ◽  
Pui-Fai Leung

For each p ∈ [2, ∞)a p-harmonic map f:Mm→Nn is a critical point of the p-energy functionalwhere Mm is a compact and Nn a complete Riemannian manifold of dimensions m and n respectively. In a recent paper [3], Takeuchi has proved that for a certain class of simply-connected δ-pinched Nn and certain type of hypersurface Nn in ℝn+1, the only stable p-harmonic maps for any compact Mm are the constant maps. Our purpose in this note is to establish the following theorem which complements Takeuchi's results.


2006 ◽  
Vol 06 (04) ◽  
pp. L379-L386
Author(s):  
STEVEN WU

We study defect-line dynamics in a 2-D spiral-wave pair in the Rössler model for its underlying local dynamics in period-N and chaotic regimes with a single bifurcation parameter κ. We find that a spiral wave pair is always stable across the period-doubling cascade and in the chaotic regime. When N ≥ 2 defect lines appear spontaneously and a loop exchange occurs across the defect line. There exists a "critical point" κ c below and above which the time-averaged total length of defect lines L converges to almost constant but different values L1 and L2. When κ > κ c defect lines show large fluctuations due to creation and annihilation processes.


2016 ◽  
Vol 37 (7) ◽  
pp. 2163-2186 ◽  
Author(s):  
ANNA GIORDANO BRUNO ◽  
SIMONE VIRILI

Let $G$ be a topological group, let $\unicode[STIX]{x1D719}$ be a continuous endomorphism of $G$ and let $H$ be a closed $\unicode[STIX]{x1D719}$-invariant subgroup of $G$. We study whether the topological entropy is an additive invariant, that is, $$\begin{eqnarray}h_{\text{top}}(\unicode[STIX]{x1D719})=h_{\text{top}}(\unicode[STIX]{x1D719}\restriction _{H})+h_{\text{top}}(\bar{\unicode[STIX]{x1D719}}),\end{eqnarray}$$ where $\bar{\unicode[STIX]{x1D719}}:G/H\rightarrow G/H$ is the map induced by $\unicode[STIX]{x1D719}$. We concentrate on the case when $G$ is totally disconnected locally compact and $H$ is either compact or normal. Under these hypotheses, we show that the above additivity property holds true whenever $\unicode[STIX]{x1D719}H=H$ and $\ker (\unicode[STIX]{x1D719})\leq H$. As an application, we give a dynamical interpretation of the scale $s(\unicode[STIX]{x1D719})$ by showing that $\log s(\unicode[STIX]{x1D719})$ is the topological entropy of a suitable map induced by $\unicode[STIX]{x1D719}$. Finally, we give necessary and sufficient conditions for the equality $\log s(\unicode[STIX]{x1D719})=h_{\text{top}}(\unicode[STIX]{x1D719})$ to hold.


Author(s):  
Lu Wudu

AbstractConsider the nonlinear neutral equationwhere pi(t), hi(t), gj(t), Q(t) Є C[t0, ∞), limt→∞hi(t) = ∞, limt→∞gj(t) = ∞ i Є Im = {1, 2, …, m}, j Є In = {1, 2, …, n}. We obtain a necessary and sufficient condition (2) for this equation to have a nonoscillatory solution x(t) with limt→∞ inf|x(t)| > 0 (Theorems 5 and 6) or to have a bounded nonoscillatory solution x(t) with limt→∞ inf|x(t)| > 0 (Theorem 7).


Author(s):  
S. N. Afriat

Since the first introduction of the concept of a matrix, questions about functions of matrices have had the attention of many writers, starting with Cayley(i) in 1858, and Laguerre(2) in 1867. In 1883, Sylvester(3) defined a general function φ(a) of a matrix a with simple characteristic roots, by use of Lagrange's interpolation formula, and Buchheim (4), in 1886, extended his definition to the case of multiple characteristic roots. Then Weyr(5) showed in 1887 that, for a matrix a with characteristic roots lying inside the circle of convergence of a power series φ(ζ), the power series φ(a) is convergent; and in 1900 Poincaré (6) obtained the formulaefor the sum, where C is a circle lying in and concentric with the circle of convergence, and containing all the characteristic roots in its ulterior, such a formula having effectively been suggested by Frobenius(7) in 1896 for defining a general function of a matrix. Phillips (8), in 1919, discovered the analogue, for power series in matrices, of Taylor's theorem. In 1926 Hensel(9) completed the result of Weyr by showing that a necessary and sufficient condition for the convergence of φ(a) is the convergence of the derived series φ(r)(α) (0 ≼ r < mα; α) at each characteristic root α of a, of order r at most the multiplicity mα of α. In 1928 Giorgi(10) gave a definition, depending on the classical canonical decomposition of a matrix, which is equivalent to the contour integral formula, and Fantappie (11) developed the theory of this formula, and obtained the expressionfor the characteristic projectors.


1969 ◽  
Vol 21 ◽  
pp. 748-750 ◽  
Author(s):  
B. R. Wenner

Although the Lebesgue dimension function is topologically invariant, the dimension-theoretic properties of a metric space can sometimes be made clearer by the introduction of a new, topologically equivalent metric. A considerable amount of effort has been devoted to the problem of constructing such metrics; one example of the fruits of this research is the following theorem by Nagata (2, Theorem 5).In order that dim R ≦ n for a metrizable space R it is necessary and sufficient to be able to define a metric p(x, y) agreeing with the topology of R such that for every ∊ > 0 and for every point x oƒ R,implyA metric ρ which satisfies the condition of this theorem is called Nagata's metric (this term was introduced, to the best of the author's knowledge, by Nagami (1, Definition 9.3)).


1993 ◽  
Vol 45 (3) ◽  
pp. 449-469 ◽  
Author(s):  
M. A. Akcoglu ◽  
Y. Déniel

AbstractLet ℝ denote the real line. Let {Tt}tєℝ be a measure preserving ergodic flow on a non atomic finite measure space (X, ℱ, μ). A nonnegative function φ on ℝ is called a weight function if ∫ℝ φ(t)dt = 1. Consider the weighted ergodic averagesof a function f X —> ℝ, where {θk} is a sequence of weight functions. Some sufficient and some necessary and sufficient conditions are given for the a.e. convergence of Akf, in particular for a special case in whichwhere φ is a fixed weight function and {(ak, rk)} is a sequence of pairs of real numbers such that rk > 0 for all k. These conditions are obtained by a combination of the methods of Bellow-Jones-Rosenblatt, developed to deal with moving ergodic averages, and the methods of Broise-Déniel-Derriennic, developed to deal with unbounded weight functions.


1990 ◽  
Vol 42 (2) ◽  
pp. 315-341 ◽  
Author(s):  
Stéphane Louboutin

Frobenius-Rabinowitsch's theorem provides us with a necessary and sufficient condition for the class-number of a complex quadratic field with negative discriminant D to be one in terms of the primality of the values taken by the quadratic polynomial with discriminant Don consecutive integers (See [1], [7]). M. D. Hendy extended Frobenius-Rabinowitsch's result to a necessary and sufficient condition for the class-number of a complex quadratic field with discriminant D to be two in terms of the primality of the values taken by the quadratic polynomials and with discriminant D (see [2], [7]).


Sign in / Sign up

Export Citation Format

Share Document