scholarly journals Iniadi pearl millet germplasm as a valuable genetic resource for high grain iron and zinc densities

2014 ◽  
Vol 13 (1) ◽  
pp. 75-82 ◽  
Author(s):  
K. N. Rai ◽  
G. Velu ◽  
M. Govindaraj ◽  
H. D. Upadhyaya ◽  
A. S. Rao ◽  
...  

Crop biofortification is increasingly being recognized as a cost-effective and sustainable approach to address the widespread micronutrient malnutrition arising from Fe and Zn deficiencies. Pearl millet as a cereal crop species has higher Fe density than all other major cereals. Earlier studies in pearl millet have shown that breeding lines, hybrid parents, improved populations and composites having high Fe and Zn densities were often based largely or entirely on iniadi pearl millet germplasm. In an attempt to identify additional sources of high Fe density in this group of germplasm, 297 accessions were screened using Perl's Prussian Blue staining, of which 191 accessions (118 from Togo, 62 from Ghana and 11 from Burkina Faso) were re-evaluated during the 2010 rainy and 2012 summer seasons using the inductively coupled plasma atomic emission spectroscopy method. On the basis of the mean performance over the two seasons (environments), large variability was observed for both Fe (51–121 mg/kg) and Zn (46–87 mg/kg) densities. There was a highly significant and positive correlation between the two micronutrients (r= 0.77, P< 0.01). Of these re-evaluated accessions, 49% had higher Fe density than the high-Fe control commercial cultivar ICTP 8203 (81 mg/kg), and most of these accessions also had Zn density ≥ 61 mg/kg (59 mg/kg for ICTP 8203). A total of 27 accessions (20 from Togo and seven from Ghana) having a Fe density of 95–121 mg/kg (1 standard error of difference above that for ICTP 8203) and a Zn density of 59–87 mg/kg were selected as a valuable germplasm resource for genetic improvement of these two micronutrients in pearl millet.

2018 ◽  
Author(s):  
Danila Barskiy ◽  
Lucia Ke ◽  
Xingyang Li ◽  
Vincent Stevenson ◽  
Nevin Widarman ◽  
...  

<p>Hyperpolarization techniques based on the use of parahydrogen provide orders of magnitude signal enhancement for magnetic resonance spectroscopy and imaging. The main drawback limiting widespread applicability of parahydrogen-based techniques in biomedicine is the presence of organometallic compounds (the polarization transfer catalysts) in solution with hyperpolarized contrast agents. These catalysts are typically complexes of platinum-group metals and their administration in vivo should be avoided.</p> <p><br></p><p>Herein, we show how extraction of a hyperpolarized compound from an organic phase to an aqueous phase combined with a rapid (less than 10 seconds) Ir-based catalyst capture by metal scavenging agents can produce pure parahydrogen-based hyperpolarized contrast agents as demonstrated by high-resolution nuclear magnetic resonance (NMR) spectroscopy and inductively coupled plasma atomic emission spectroscopy (ICP-AES). The presented methodology enables fast and efficient means of producing pure hyperpolarized aqueous solutions for biomedical and other uses.</p>


2018 ◽  
Author(s):  
Danila Barskiy ◽  
Lucia Ke ◽  
Xingyang Li ◽  
Vincent Stevenson ◽  
Nevin Widarman ◽  
...  

<p>Hyperpolarization techniques based on the use of parahydrogen provide orders of magnitude signal enhancement for magnetic resonance spectroscopy and imaging. The main drawback limiting widespread applicability of parahydrogen-based techniques in biomedicine is the presence of organometallic compounds (the polarization transfer catalysts) in solution with hyperpolarized contrast agents. These catalysts are typically complexes of platinum-group metals and their administration in vivo should be avoided.</p> <p><br></p><p>Herein, we show how extraction of a hyperpolarized compound from an organic phase to an aqueous phase combined with a rapid (less than 10 seconds) Ir-based catalyst capture by metal scavenging agents can produce pure parahydrogen-based hyperpolarized contrast agents as demonstrated by high-resolution nuclear magnetic resonance (NMR) spectroscopy and inductively coupled plasma atomic emission spectroscopy (ICP-AES). The presented methodology enables fast and efficient means of producing pure hyperpolarized aqueous solutions for biomedical and other uses.</p>


2020 ◽  
Vol 86 (5) ◽  
pp. 16-21
Author(s):  
T. A. Karimova ◽  
G. L. Buchbinder ◽  
S. V. Kachin

Calibration by the concentration ratio provides better metrological characteristics compared to other calibration modes when using the inductively coupled plasma atomic emission spectrometry (ICP-AES) for analysis of geological samples and technical materials on their base. The main reasons for the observed improvement are: i) elimination of the calibration error of measuring vessels and the error of weighing samples of the analyzed materials from the total error of the analysis; ii) high intensity of the lines of base element; and iii) higher accuracy of measuring the ratio of intensities compared to that of measuring the absolute intensities. Calcium oxide is better suited as a base when using calibration by the concentration ratio in analysis of carbonate rocks, technical materials, slags containing less than 20% SiO2 and more than 20% CaO. An equation is derived to calculate the content of components determined in carbonate materials when using calibration by the concentration ratio. A method of ICP-AES with calibration by the concentration ratio is developed for determination of CaO (in the range of contents 20 – 100%), SiO2 (2.0 – 35%), Al2O3 (0.1 – 30%), MgO (0.1 – 20%), Fe2O3 (0.5 – 40%), Na2O (0.1 – 15%), K2O (0.1 – 5%), P2O5 (0.001 – 2%), MnO (0.01 – 2%), TiO2 (0.01 – 2.0%) in various carbonate materials. Acid decomposition of the samples in closed vessels heated in a HotBlock 200 system is proposed. Correctness of the procedure is confirmed in analysis of standard samples of rocks. The developed procedure was used during the interlaboratory analysis of the standard sample of slag SH17 produced by ZAO ISO (Yekaterinburg, Russia).


Sign in / Sign up

Export Citation Format

Share Document