scholarly journals White Dwarf Pulsations

1980 ◽  
Vol 5 ◽  
pp. 469-472
Author(s):  
W. Dziembowski

It has been known for a long time that white dwarfs are pulsationally unstable if nuclear burning takes place in their envelopes. Perturbation of energy generation rate promotes pulsational instability and this effect is frequently referred to as ε-mechanism. In recent years, with the advent of high-speed photometry, many rapidly varying white dwarfs have been discovered. However, periods of variability were found to be significantly longer than the periods of radial pulsations which were the only type of oscillations considered before the discovery. Furthermore, the case of ε-mechanism as being responsible for the observed variability has never been made strong for any of the observed objects.Variable white dwarfs are found among: Io single DA-type objects in the effective temperature range 10000-15000K; 2o members of close, usually but not always, cataclysmic binary systems. Although, following an early suggestion by Warner and Robinson (1972), the excitation of nonradial oscillation is postulated in both cases, the two types represent very different physical situations and they will be discussed here separately.

1975 ◽  
Vol 67 ◽  
pp. 355-367
Author(s):  
V. G. Gorbatsky

The light variations, properties of U Gem binary systems, outbursts of U Gem systems, and evolution and related problems are discussed.Recent high-speed photometry of Z Cha is mentioned in an addendum.


1994 ◽  
Vol 107 ◽  
pp. 298 ◽  
Author(s):  
Steven D. Kawaler ◽  
Howard E. Bond ◽  
Lisa E. Sherbert ◽  
Todd K. Watson

Author(s):  
J van Roestel ◽  
T Kupfer ◽  
M J Green ◽  
S Wong ◽  
L Bildsten ◽  
...  

Abstract AM CVn systems are ultra-compact, hydrogen-depleted and helium-rich, accreting binaries with degenerate or semi-degenerate donors. We report the discovery of five new eclipsing AM CVn systems with orbital periods of 61.5, 55.5, 53.3, 37.4, and 35.4 minutes. These systems were discovered by searching for deep eclipses in the Zwicky Transient Facility (ZTF) lightcurves of white dwarfs selected using Gaia parallaxes. We obtained phase-resolved spectroscopy to confirm that all systems are AM CVn binaries, and we obtained high-speed photometry to confirm the eclipse and characterize the systems. The spectra show double-peaked He-lines but also show metals, including K and Zn, elements that have never been detected in AM CVn systems before. By modelling the high-speed photometry, we measured the mass and radius of the donor star, potentially constraining the evolutionary channel that formed these AM CVn systems. We determined that the average mass of the accreting white dwarf is ≈0.8 M⊙, and that the white dwarfs in long-period systems are hotter than predicted by recently updated theoretical models. The donors have a high entropy and are a factor of ≈ 2 more massive compared to zero-entropy donors at the same orbital period. The large donor radius is most consistent with He-star progenitors, although the observed spectral features seem to contradict this. The discovery of 5 new eclipsing AM CVn systems is consistent with the known observed AM CVn space density and estimated ZTF recovery efficiency.


1977 ◽  
Vol 42 ◽  
pp. 327-339 ◽  
Author(s):  
R. Sienkiewicz ◽  
W. Dziembowski

AbstractWe present results of thermal and vibrational stability analysis for 1 M⊙ white dwarf models corresponding to various accretion rates ≳ 10−11 M⊙/y. Accretion is assumed to be spherically symmetric and stationary. Thermal instability due to nuclear burning of hydrogen (at lower accretion rates) and helium (at higher rates) was found. At medium rates two growing thermal modes are simultaneously present. Vibrational instability was found for all models except those corresponding to highest accretion rates. The excitation rates for some nonradial g-modes are at least 3 orders of magnitude higher than those for radial pulsations. These rates are also higher than the excitation rates for thermal modes in certain range of accretion rates corresponding to high luminosities and effective temperatures. Among objects in which these instabilities may be important are symbiotic stars and nuclei of planetary nebulae.


1998 ◽  
Vol 185 ◽  
pp. 321-322 ◽  
Author(s):  
Brian Warner ◽  
Liza Van Zyl

Non-radial pulsations in isolated white dwarfs have been known for 25 years and it has been shown that the hydrogen-rich (DA) white dwarfs have a high probability of pulsating if they lie in the instability strip with effective temperature between 11500 and 13200 K - the ZZ Ceti stars (e.g. Kepler and Nelan 1993). Analysing techniques developed for such stars allow derivation of masses, luminosities, rotation periods, hydrogen surface layer masses and other properties (e.g. Kepler and Bradley 1995). A number of binary systems are known in which the primary is a white dwarf; dominant in this class are the cataclysmic variable (CV) stars. Until now no CV primary has been found to have non-radial pulsations.


Author(s):  
Elena Cukanovaite ◽  
Pier-Emmanuel Tremblay ◽  
Pierre Bergeron ◽  
Bernd Freytag ◽  
Hans-Günter Ludwig ◽  
...  

Abstract In this paper, we present corrections to the spectroscopic parameters of DB and DBA white dwarfs with −10.0 ≤ log (H/He) ≤−2.0, 7.5 ≤ log g ≤9.0 and 12 000 K ≲ Teff ≲ 34 000 K, based on 282 3D atmospheric models calculated with the CO5BOLD radiation-hydrodynamics code. These corrections arise due to a better physical treatment of convective energy transport in 3D models when compared to the previously available 1D model atmospheres. By applying the corrections to an existing SDSS sample of DB and DBA white dwarfs, we find significant corrections both for effective temperature and surface gravity. The 3D log g corrections are most significant for Teff ≲ 18, 000 K, reaching up to −0.20 dex at log g = 8.0. However, in this low effective temperature range, the surface gravity determined from the spectroscopic technique, can also be significantly affected by the treatment of the neutral van der Waals line broadening of helium and by non-ideal effects due to the perturbation of helium by neutral atoms. Thus, by removing uncertainties due to 1D convection, our work showcases the need for improved description of microphysics for DB and DBA model atmospheres. Overall, we find that our 3D spectroscopic parameters for the SDSS sample are generally in agreement with Gaia DR2 absolute fluxes within 1-3σ for individual white dwarfs. By comparing our results to DA white dwarfs, we determine that the precision and accuracy of DB/DBA atmospheric models are similar. For ease of user application of the correction functions, we provide an example Python code.


2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Chen Wang ◽  
Shihui Luo ◽  
Ziqiang Xu ◽  
Chang Gao ◽  
Weihua Ma

In order to find out the reason for the bogie frame instability alarm in the high-speed railway vehicle, the influence of wheel tread profile of the unstable vehicle was investigated. By means of wheel-rail contact analysis and dynamics simulation, the effect of tread wear on the bogie frame lateral stability was studied. The result indicates that the concave wear of tread is gradually aggravated with the increase of operation mileage; meanwhile the wheel-rail equivalent conicity also increases. For the rail which has not been grinded for a long time, the wear of gauge corner and wide-worn zone is relatively severe; the matching equivalent conicity is 0.31-0.4 between the worn rail and the concave-worn-tread wheel set. The equivalent conicity between the grinded rail and the concave-worn tread is below 0.25; the equivalent conicities are always below 0.1 between the reprofiled wheel set and various rails. The result of the line test indicates that the lateral acceleration of bogie frame corresponding to the worn wheel-rail can reach 8.5m/s2, and the acceleration after the grinding is reduced below 4.5m/s2. By dynamics simulation, it turns out that the unreasonable wheel-rail matching relationship is the major cause of the bogie frame lateral alarm. With the tread-concave wear being aggravated, the equivalent conicity of wheel-rail matching constantly increases, which leads to the bogie frame lateral instability and then the frame instability alarm.


1972 ◽  
Vol 94 (4) ◽  
pp. 706-714 ◽  
Author(s):  
J. D. Burton ◽  
J. Lobo-Guerrero U.

Reciprocating pumps have been employed in conjunction with air vessels and fluid accumulators for a long time in order to reduce maximum cylinder pressures and energy wastage in friction. More recently, diaphragm pumps, run at high speed, have been built utilizing a hydraulic accumulator or capacitance in conjunction with a hydraulic inductance, in order to greatly increase the flow output. Volumetric efficiencies of over 250 percent have been obtained. The present paper describes briefly this induced flow principle and then compares theoretical solutions with experimental measurements taken in the first commercially available pump of this type.


2006 ◽  
Vol 2 (S240) ◽  
pp. 496-498
Author(s):  
K. Shabun ◽  
A. Richichi ◽  
U. Munari ◽  
A. Siviero ◽  
B. Pacsysnki

AbstractBinary and multiple systems constitute one of the main tools for obtaining fundamental stellar parameters, such as masses, radii, effective temperatures and distances. One especially fortunate, and at the same time rare, occurrence is that of double-lined eclipsing binaries with well-detached components. In this special case, it is possible to obtain a full solution of all orbital and stellar parameters, with the exception of the effective temperature of one star, which is normally estimated from spectral type or derived from atmospheric analysis of the spectrum. Long-baseline interferometry at facilities such as the ESO VLTI is beginning to have the capability to measure directly the angular separation and the angular diameter of some selected eclipsing binary systems, and we have proposed such observations with the AMBER instrument. In particular, we aim at deriving directly the effective temperature of at least one of the components in the proposed system, thereby avoiding any assumptions in the global solution through the Wilson–Devinney method. We will also obtain an independent check of the results of this latter method for the distance to the system. This represents the first step towards a global calibration of eclipsing binaries as distance indicators. Our results will also contribute to the effective temperature scale for hot stars. The extension of this approach to a wider sample of eclipsing binaries could provide an independent method to assess the distance to the LMC. The observations will extend accurate empirical calibration to spectral type O9 – B0.


Sign in / Sign up

Export Citation Format

Share Document