scholarly journals TEM Sample Preparation: An Interdisciplinary Website

2009 ◽  
Vol 17 (2) ◽  
pp. 38-41 ◽  
Author(s):  
Jeanne Ayache ◽  
Luc Beaunier ◽  
Jacqueline Boumendil ◽  
Gabrielle Ehret ◽  
Danièle Laub

Sample preparation is of central importance for the characterization of materials by transmission electron microscopy (TEM). As a guide to researchers seeking practical help on the use of all types of TEM sample preparation techniques, we have created an Internet website. This website has been designed in French and is now translated into English. The website is accessible free of charge.The TEMSAMPREP website, figure 1 http://temsamprep.in2p3.fr/, is the result of a synergistic effort of an atypical team of five electron microscopy scientists having different research specialties in physics, mineralogy, material science, and biology. They shared five years of human adventure in creating the website to transmit their 30 years of TEM experience to the international community.

1992 ◽  
Vol 70 (10-11) ◽  
pp. 875-880 ◽  
Author(s):  
J. P. McCaffrey ◽  
G. I. Sproule ◽  
R. Sargent

Techniques employed for the preparation of transmission electron microscopy (TEM) samples can introduce artifacts that obscure subtle detail in the materials being studied. Traditional semiconductor sample preparation techniques rely heavily on ion milling, which leaves amorphous layers on ion milled surfaces and some intermixing across interfaces, thus degrading the TEM images of these samples. Experimental results of the extent of this amorphization and intermixing are presented for silicon-based semiconductor samples, and methods to minimize these effects are suggested. These methods include variations in ion milling parameters that reduce the extent of the artifacts, and improvements in the small-angle cleavage technique that eliminate these artifacts completely.


Author(s):  
Ching Shan Sung ◽  
Hsiu Ting Lee ◽  
Jian Shing Luo

Abstract Transmission electron microscopy (TEM) plays an important role in the structural analysis and characterization of materials for process evaluation and failure analysis in the integrated circuit (IC) industry as device shrinkage continues. It is well known that a high quality TEM sample is one of the keys which enables to facilitate successful TEM analysis. This paper demonstrates a few examples to show the tricks on positioning, protection deposition, sample dicing, and focused ion beam milling of the TEM sample preparation for advanced DRAMs. The micro-structures of the devices and samples architectures were observed by using cross sectional transmission electron microscopy, scanning electron microscopy, and optical microscopy. Following these tricks can help readers to prepare TEM samples with higher quality and efficiency.


1998 ◽  
Vol 523 ◽  
Author(s):  
C. Amy Hunt ◽  
Yuhong Zhang ◽  
David Su

AbstractTransmission electron microscopy (TEM) is a useful tool in process evaluation and failure analysis for semiconductor industries. A common focus of semiconductor TEM analyses is metalization vias (plugs) and it is often desirable to cross-section through a particular one. If the cross-sectional plane deviates away from the center of the plug, then the thin adhesion layer around the plug will be blurred by surrounding materials such as the inter-layer dielectric and the plug material. The importance of these constraints, along with the difficulty of precision sample preparation, has risen sharply as feature sizes have fallen to 0.25 μm and below. The suitability of common sample preparation techniques for these samples is evaluated.


Author(s):  
U. Muehle ◽  
A. Lenk ◽  
M. Lehmann ◽  
H. Lichte

Abstract In accordance with the predictions of the International Semiconductor Association, a further decrease in the structural widths of semiconductor devices is expected. For an in-depth characterization of actual structural details, the transmission electron microscopy (TEM)-technique is becoming more and more significant. An urgent requirement is in the visualization of dimensions of the doped regions and estimation of p-n-junctions profile with a high level spatial resolution. The off-axis electron holography, a special TEM-technique, is able to visualize electrically active areas in semiconductors. This article describes a way to achieve sample preparation for TEM-holography from actual memory products and also provides an idea of the potential of this technique for semiconductor failure analysis. It shows that different types and sizes of FET's and testing structures could be visualized by focusing on the physical basics, technical solutions, and sample preparation.


Sign in / Sign up

Export Citation Format

Share Document