Biological Sample Preparation for SEM Imaging of Porcine Retina

2012 ◽  
Vol 20 (2) ◽  
pp. 28-31 ◽  
Author(s):  
Patrick Moran ◽  
Brittany Coats

Sample preparation is a critical step in scanning electron microscopy (SEM) imaging. This is especially true for biological samples because of charge build-up and sensitivity to vacuum and electron beam damage. In terms of ultrastructure imaging, a variety of advancements in detectors and approaches have improved biological imaging such that fewer steps are required for sample preparation. However, the conventional approach incorporating osmium tetroxide fixing, ethanol dehydrating, critical-point drying, and coating still finds useful application. This paper evaluates three biological sample-preparation methodologies for imaging the ultrastructure of immature porcine retina. The three preparation methods examined are critical-point drying (CPD), hexamethyldisilazane (HMDS) dehydration, and direct imaging by environmental scanning electron microscopy (ESEM). Preparation methodologies were evaluated based on resulting image quality and reduced potential for artifacts.

Author(s):  
Linda M. Sicko ◽  
Thomas E. Jensen

The use of critical point drying is rapidly becoming a popular method of preparing biological samples for scanning electron microscopy. The procedure is rapid, and produces consistent results with a variety of samples. The preservation of surface details is much greater than that of air drying, and the procedure is less complicated than that of freeze drying. This paper will present results comparing conventional air-drying of plant specimens to critical point drying, both of fixed and unfixed material. The preservation of delicate structures which are easily damaged in processing and the use of filter paper as a vehicle for drying will be discussed.


Author(s):  
Arthur L. Cohen ◽  
Gerald E. Garner

The surface forms and structures of animal cells have been strikingly preserved for scanning electron microscopy by freeze-drying and by critical point drying both by the method with CO2 used as the transitional fluid and the later procedure which uses a fluorocarbon (Freon 13) as a medium for the transition from the liquid to the gaseous environment. Freeze-drying is often prolonged (5-12 hours as compared with an hour or less by the critical point method) and in our experience with mold cultures on agar, the substrate shrivels and cracks and hyphal filaments are distorted.Despite, and possibly because of a flexible but inelastic cell wall, plant cells often show greater distortion than do animal cells after evaporative drying or replacement dehydration for mixrotechnical work. The animal cell membrane can contract more or less uniformly on drying - as shown by the numerous micrographs of well-preserved erythrocytes, while plant cell walls often crumple. The many scanning electron micrographs of partially collapsed pollen grains bear witness to this fact.


1980 ◽  
Vol 58 (15) ◽  
pp. 1700-1703 ◽  
Author(s):  
E. C. Quattlebaum ◽  
G. R. Carner

Vapor fixation for 96 h with 1% osmium tetroxide (OsO4) and 3–4 days air drying produced distortion-free specimens of Beauveria spp. for examination with the scanning electron microscope. A combination of 4 h OsO4 vapor fixation and freeze-drying also reduced disruption satisfactorily but specimens were not as well preserved as with the first method. Preparation methods that were ineffective in preventing collapse of hydrophilic structures were Cling Free® sprayed on specimens prior to examination, freeze-drying, critical-point drying (of unfixed material), and vapor fixation with glutaraldehyde.


Sign in / Sign up

Export Citation Format

Share Document