Comparative study of methanogens in one- and two-stage anaerobic digester treating food waste

2014 ◽  
Vol 30 (6) ◽  
pp. 515-523 ◽  
Author(s):  
Marta Kinnunen ◽  
Daniel Hilderbrandt ◽  
Stefan Grimberg ◽  
Shane Rogers ◽  
Sumona Mondal

AbstractChanges in methanogenic archaea were investigated in pilot-scale experiments during one- and two-stage mesophilic anaerobic digestion (AD) of food waste. Methane yields were 379.7±75.3 liters of methane per kg of volatile solids [L-CH4(kg-VS)−1] added to the system, during one-stage operation, and 446±922 L-CH4(kg-VS)−1added during two-stage operation. Populations of methanogenic archaea were monitored quantitatively by targeting the functional gene for methyl-coenzyme-M reductase (mcrA) using real-time quantitative polymerase chain reaction techniques. During one-stage operation, meanmcrAgene concentrations were 2.48×109±2.7×109copies ml−1. Two-stage operation yielded meanmcrAgene concentrations of 9.85×108±8.2×108copies ml−1in the fermentation and 1.76×1010±8.5×109copies ml−1in the methanogenesis reactors, respectively. Diversity of archaea in the methanogenic reactors was investigated by denaturing gradient gel electrophoresis targeting the V3 region of 16S rRNA of archaea. The Shannon index (H) was 2.98 for one-stage operation and 7.29 for two-stage operation, suggesting greater archaeal diversity in the two-stage AD. The fivefold increase in methanogenic archaea populations during the two-stage operation, as indicated bymcrAgene concentration, corresponded to an increase in methane production rates. While the diversity may also be related to the stability of the microbial bioprocesses and improved methane production rates, the correlation between diversity and production rates should be studied further.

2019 ◽  
Vol 9 (2) ◽  
pp. 289-299
Author(s):  
Joy Riungu ◽  
Mariska Ronteltap ◽  
Jules B. van Lier

Abstract Biochemical energy recovery using digestion and co-digestion of faecal matter collected from urine diverting dehydrating toilet faeces (UDDT-F) and mixed organic market waste (OMW) was studied under laboratory- and pilot-scale conditions. Laboratory-scale biochemical methane potential (BMP) tests showed an increase in methane production with an increase in OMW fraction in the feed substrate. In subsequent pilot-scale experiments, one-stage and two-stage plug flow digester were researched, applying UDDT-F:OMW ratios of 4:1 and 1:0, at about 10 and 12% total solids (TS) slurry concentrations. Comparable methane production was observed in one-stage (Ro-4:1,12%) (314 ± 15 mL CH4/g VS added) and two-stage (Ram-4:1,12%) (325 ± 12 mL CH4/g VS added) digesters, when applying 12% TS slurry concentration. However, biogas production in Ram-4:1,12% digester (571 ± 25 mL CH4/g VS added) was about 12% higher than in Ro-4:1,12%, significantly more than the slight difference in methane production, i.e. 3–4%. The former was attributed to enhanced waste solubilisation and increased CO2 dissolution, resulting from mixing the bicarbonate-rich methanogenic effluent for neutralisation purposes with the low pH (4.9) influent acquired from the pre-acidification stage. Moreover, higher process stability was observed in the first parts of the plug flow two-stage digester, characterised by lower VFA concentrations.


2021 ◽  
Vol 13 (3) ◽  
pp. 1109
Author(s):  
Edgar Ricardo Oviedo-Ocaña ◽  
Angélica María Hernández-Gómez ◽  
Marcos Ríos ◽  
Anauribeth Portela ◽  
Viviana Sánchez-Torres ◽  
...  

The composting of green waste (GW) proceeds slowly due to the presence of slowly degradable compounds in that substrate. The introduction of amendments and bulking materials can improve organic matter degradation and end-product quality. However, additional strategies such as two-stage composting, can deal with the slow degradation of green waste. This paper evaluates the effect of two-stage composting on the process and end-product quality of the co-composting of green waste and food waste amended with sawdust and phosphate rock. A pilot-scale study was developed using two treatments (in triplicate each), one being a two-stage composting and the other being a traditional composting. The two treatments used the same mixture (wet weight): 46% green waste, 19% unprocessed food waste, 18% processed food waste, 13% sawdust, and 4% phosphate rock. The traditional composting observed a higher degradation rate of organic matter during the mesophilic and thermophilic phases and observed thermophilic temperatures were maintained for longer periods during these two phases compared to two-stage composting (i.e., six days). Nonetheless, during the cooling and maturation phases, the two treatments had similar behaviors with regard to temperature, pH, and electrical conductivity, and the end-products resulting from both treatments did not statistically differ. Therefore, from this study, it is concluded that other additional complementary strategies must be evaluated to further improve GW composting.


Author(s):  
Gamal Hassan ◽  
Mohamed Azab El-Liethy ◽  
Fatma El-Gohary ◽  
Sherien Elagroudy ◽  
Mohamed Abo-Aly ◽  
...  

2019 ◽  
Vol 130 ◽  
pp. 1108-1115 ◽  
Author(s):  
Dalal E. Algapani ◽  
Wei Qiao ◽  
Marina Ricci ◽  
Davide Bianchi ◽  
Simon M. Wandera ◽  
...  

2010 ◽  
Vol 35 (15) ◽  
pp. 8253-8261 ◽  
Author(s):  
Chun-Feng Chu ◽  
Yoshitaka Ebie ◽  
Kai-Qin Xu ◽  
Yu-You Li ◽  
Yuhei Inamori

2015 ◽  
Vol 38 ◽  
pp. 388-398 ◽  
Author(s):  
Javkhlan Ariunbaatar ◽  
Ester Scotto Di Perta ◽  
Antonio Panico ◽  
Luigi Frunzo ◽  
Giovanni Esposito ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document