scholarly journals Footprints of triggering in large area surveys of the nearby ISM and YSOs

2006 ◽  
Vol 2 (S237) ◽  
pp. 124-127
Author(s):  
L. Viktor Tóth ◽  
Zoltán T. Kiss

AbstractOur goal is to evaluate the role of triggering effects on the star formation and early stellar evolution by presenting a statistically large sample of cloud and low-mass YSO data. We conducted large area surveys (ranging from 400 square-degree to 10800 square-degree) in optical, NIR and FIR. The distribution of the ISM and low-mass YSOs were surveyed. A relative excess was found statistically in the number of dense and cold core bearing clouds and low mass YSOs in the direction of the FIR loop shells indicating a possible excess in their formation.

2019 ◽  
Vol 624 ◽  
pp. A137 ◽  
Author(s):  
L. Haemmerlé ◽  
P. Eggenberger ◽  
S. Ekström ◽  
C. Georgy ◽  
G. Meynet ◽  
...  

Grids of stellar models are useful tools to derive the properties of stellar clusters, in particular young clusters hosting massive stars, and to provide information on the star formation process in various mass ranges. Because of their short evolutionary timescale, massive stars end their life while their low-mass siblings are still on the pre-main sequence (pre-MS) phase. Thus the study of young clusters requires consistent consideration of all the phases of stellar evolution. But despite the large number of grids that are available in the literature, a grid accounting for the evolution from the pre-MS accretion phase to the post-MS phase in the whole stellar mass range is still lacking. We build a grid of stellar models at solar metallicity with masses from 0.8 M⊙ to 120 M⊙, including pre-MS phase with accretion. We use the GENEC code to run stellar models on this mass range. The accretion law is chosen to match the observations of pre-MS objects on the Hertzsprung-Russell diagram. We describe the evolutionary tracks and isochrones of our models. The grid is connected to previous MS and post-MS grids computed with the same numerical method and physical assumptions, which provides the widest grid in mass and age to date.


1995 ◽  
Vol 151 ◽  
pp. 216-217
Author(s):  
R. Neuhäuser ◽  
Th. Preibisch

AbstractWe study the X-ray emission of several hundred (young, low-mass, late-type, pre-main sequence) T Tauri stars (TTS) in the Taurus T association, a nearby well-studied region of ongoing star formation. We report on X-ray emission variability of TTS as observed with the flux-limited ROSAT All-Sky Survey (RASS). Since RASS observations are spatially unbiased, we can investigate the X-ray flare rate of TTS on a large sample. We find that large flares are very rare (once per year), while medium-size flares can occur once in ∼ 40 days.


Author(s):  
Shigehisa Takakuwa ◽  
Daisuke Iono ◽  
Baltasar Vila-Vilaro ◽  
Tomohiko Sekiguchi ◽  
Ryohei Kawabe
Keyword(s):  

2013 ◽  
Vol 554 ◽  
pp. A48 ◽  
Author(s):  
V. M. Rivilla ◽  
J. Martín-Pintado ◽  
I. Jiménez-Serra ◽  
A. Rodríguez-Franco

2009 ◽  
Vol 5 (H15) ◽  
pp. 778-778
Author(s):  
Janet E. Drew

AbstractUntil recently, Hα has been seen as the tracer of ionized gas, picking out both star formation and the late stages of stellar evolution. This has been reaffirmed, spectacularly, by the recent WHAM and SHS surveys. But the advent of large-area digital detectors creates a new role for narrowband Hα as a direct, simultaneous, measure of intrinsic stellar colour and reddening when e.g. r'-Hα is combined with a nearby broad band colour e.g. r'- i'. This new capability has been clearly demonstrated by the nearly-complete IPHAS survey.


2007 ◽  
Vol 313 (1-3) ◽  
pp. 169-173 ◽  
Author(s):  
Shigehisa Takakuwa ◽  
Daisuke Iono ◽  
Baltasar Vila-Vilaro ◽  
Tomohiko Sekiguchi ◽  
Ryohei Kawabe
Keyword(s):  

1998 ◽  
Vol 11 (2) ◽  
pp. 1137-1139 ◽  
Author(s):  
Thierry Montmerle ◽  
Lennart Nordh

With all its instruments, ISO is sensitive to temperatures in the range ~ 30 – 2000 K. This range is particularly adapted to studies of dense interstellar matter (gas and dust) in cold clouds, and to material associated with very early stages of stellar evolution: circumstellar matter around low-mass stars (disks, envelopes), outflows generated by them and interactions with the surrounding medium.


2015 ◽  
Vol 75-76 ◽  
pp. 137-141
Author(s):  
P. André ◽  
V. Könyves ◽  
A. Roy
Keyword(s):  

1998 ◽  
Vol 508 (1) ◽  
pp. 347-369 ◽  
Author(s):  
K. L. Luhman ◽  
G. H. Rieke ◽  
C. J. Lada ◽  
E. A. Lada

2020 ◽  
Vol 500 (4) ◽  
pp. 4937-4957 ◽  
Author(s):  
G Martin ◽  
R A Jackson ◽  
S Kaviraj ◽  
H Choi ◽  
J E G Devriendt ◽  
...  

ABSTRACT Dwarf galaxies (M⋆ < 109 M⊙) are key drivers of mass assembly in high-mass galaxies, but relatively little is understood about the assembly of dwarf galaxies themselves. Using the NewHorizon cosmological simulation (∼40 pc spatial resolution), we investigate how mergers and fly-bys drive the mass assembly and structural evolution of around 1000 field and group dwarfs up to z = 0.5. We find that, while dwarf galaxies often exhibit disturbed morphologies (5 and 20 per cent are disturbed at z = 1 and z = 3 respectively), only a small proportion of the morphological disturbances seen in dwarf galaxies are driven by mergers at any redshift (for 109 M⊙, mergers drive under 20 per cent morphological disturbances). They are instead primarily the result of interactions that do not end in a merger (e.g. fly-bys). Given the large fraction of apparently morphologically disturbed dwarf galaxies which are not, in fact, merging, this finding is particularly important to future studies identifying dwarf mergers and post-mergers morphologically at intermediate and high redshifts. Dwarfs typically undergo one major and one minor merger between z = 5 and z = 0.5, accounting for 10 per cent of their total stellar mass. Mergers can also drive moderate star formation enhancements at lower redshifts (3 or 4 times at z = 1), but this accounts for only a few per cent of stellar mass in the dwarf regime given their infrequency. Non-merger interactions drive significantly smaller star formation enhancements (around two times), but their preponderance relative to mergers means they account for around 10 per cent of stellar mass formed in the dwarf regime.


Sign in / Sign up

Export Citation Format

Share Document