scholarly journals The role of low-mass star clusters in massive star formation. The Orion case

2013 ◽  
Vol 554 ◽  
pp. A48 ◽  
Author(s):  
V. M. Rivilla ◽  
J. Martín-Pintado ◽  
I. Jiménez-Serra ◽  
A. Rodríguez-Franco
1991 ◽  
Vol 147 ◽  
pp. 391-393
Author(s):  
F. Bertoldi ◽  
C.F. McKee ◽  
R.I. Klein

The gravitational stability of molecular cloud clumps before and after the onset of massive star formation is discussed. We suggest that the most massive clumps are magnetically supercritical but gravitationally stabilized by the hydromagnetic turbulence caused by FUV photoionization-regulated low-mass star formation in their interiors. The ionizing radiation of an O star can trigger star formation in initially sub- and supercritical clumps.


1991 ◽  
Vol 147 ◽  
pp. 391-393
Author(s):  
F. Bertoldi ◽  
C.F. McKee ◽  
R.I. Klein

The gravitational stability of molecular cloud clumps before and after the onset of massive star formation is discussed. We suggest that the most massive clumps are magnetically supercritical but gravitationally stabilized by the hydromagnetic turbulence caused by FUV photoionization-regulated low-mass star formation in their interiors. The ionizing radiation of an O star can trigger star formation in initially sub- and supercritical clumps.


2015 ◽  
Vol 11 (S315) ◽  
pp. 154-162 ◽  
Author(s):  
Jonathan C. Tan

AbstractI review theoretical models of star formation and how they apply across the stellar mass spectrum. Several distinct theories are under active study for massive star formation, especiallyTurbulent Core Accretion,Competitive AccretionandProtostellar Mergers, leading to distinct observational predictions. These include the types of initial conditions, the structure of infall envelopes, disks and outflows, and the relation of massive star formation to star cluster formation. Even for Core Accretion models, there are several major uncertainties related to the timescale of collapse, the relative importance of different processes for preventing fragmentation in massive cores, and the nature of disks and outflows. I end by discussing some recent observational results that are helping to improve our understanding of these processes.


2018 ◽  
Vol 483 (4) ◽  
pp. 4893-4900 ◽  
Author(s):  
Nathaniel Dylan Kee ◽  
Rolf Kuiper

Abstract Radiative feedback from luminous, massive stars during their formation is a key process in moderating accretion on to the stellar object. In the prior papers in this series, we showed that one form such feedback takes is UV line-driven disc ablation. Extending on this study, we now constrain the strength of this effect in the parameter range of star and disc properties appropriate to forming massive stars. Simulations show that ablation rate depends strongly on stellar parameters, but that this dependence can be parameterized as a nearly constant, fixed enhancement over the wind mass-loss rate, allowing us to predict the rate of disc ablation for massive (proto)stars as a function of stellar mass and metallicity. By comparing this to predicted accretion rates, we conclude that ablation is a strong feedback effect for very massive (proto)stars which should be considered in future studies of massive star formation.


2018 ◽  
Vol 14 (A30) ◽  
pp. 118-118
Author(s):  
Fatemeh S. Tabatabaei ◽  
M. Almudena Prieto ◽  
Juan A. Fernández-Ontiveros

AbstractThe role of the magnetic fields in the formation and quenching of stars with different mass is unknown. We studied the energy balance and the star formation efficiency in a sample of molecular clouds in the central kpc region of NGC 1097, known to be highly magnetized. Combining the full polarization VLA/radio continuum observations with the HST/Hα, Paα and the SMA/CO lines observations, we separated the thermal and non-thermal synchrotron emission and compared the magnetic, turbulent, and thermal pressures. Most of the molecular clouds are magnetically supported against gravitational collapse needed to form cores of massive stars. The massive star formation efficiency of the clouds also drops with the magnetic field strength, while it is uncorrelated with turbulence (Tabatabaei et al. 2018). The inefficiency of the massive star formation and the low-mass stellar population in the center of NGC 1097 can be explained in the following steps: I) Magnetic fields supporting the molecular clouds prevent the collapse of gas to densities needed to form massive stars. II) These clouds can then be fragmented into smaller pieces due to e.g., stellar feedback, non-linear perturbations and instabilities leading to local, small-scale diffusion of the magnetic fields. III) Self-gravity overcomes and the smaller clouds seed the cores of the low-mass stars.


1997 ◽  
Vol 182 ◽  
pp. 525-536
Author(s):  
Ed Churchwell

Observations during the past several years strongly imply that virtually every star, independent of final mass, goes through a phase of rapid outflow simultaneously with rapid accretion during formation. The structure and properties of outflows and accretion disks associated with low-mass star formation has received intensive observational attention during the past several years (see the reviews and references in Lada 1985; Edwards, Ray, and Mundt 1993; Fukui et al. 1993; and this symposium). Young stellar objects (YSOs) with Lbol < 103 L⊘ will be referred to as “low-mass” stars in this review. The range of physical properties of CO outflows associated with YSOs of all masses are enormous, see Fukui et al. (1993). I will focus attention in this review on what we know about massive YSOs and their environments.


Galaxies ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 13 ◽  
Author(s):  
Claus Leitherer

Spectroscopic observations of a massive star formation in the ultraviolet and their interpretation are reviewed. After a brief historical retrospective, two well-studied resolved star clusters and the surrounding H II regions are introduced: NGC 2070 in the Large Magellanic Cloud and NGC 604 in M33. These regions serve as a training set for studies of more distant clusters, which can no longer be resolved into individual stars. Observations of recently formed star clusters and extended regions in star-forming galaxies in the nearby universe beyond the Local Group are presented. Their interpretation relies on spectral synthesis models. The successes and failures of such models are discussed, and future directions are highlighted. I present a case study of the extraordinary star cluster and giant H II region in the blue compact galaxy II Zw 40. The review concludes with a preview of two upcoming Hubble Space Telescope programs: ULLYSES, a survey of massive stars in nearby galaxies, and CLASSY, a study of massive star clusters in star-forming galaxies.


2019 ◽  
Vol 625 ◽  
pp. A134 ◽  
Author(s):  
D. Russeil ◽  
M. Figueira ◽  
A. Zavagno ◽  
F. Motte ◽  
N. Schneider ◽  
...  

Aims. To constrain models of high-mass star formation it is important to identify the massive dense cores (MDCs) that are able to form high-mass star(s). This is one of the purposes of the Herschel/HOBYS key programme. Here, we carry out the census and characterise of the properties of the MDCs population of the NGC 6357 H II region. Methods. Our study is based on the Herschel/PACS and SPIRE 70−500 μm images of NGC 6357 complemented with (sub-)millimetre and mid-infrared data. We followed the procedure established by the Herschel/HOBYS consortium to extract ~0.1 pc massive dense cores using the getsources software. We estimated their physical parameters (temperatures, masses, luminosities) from spectral energy distribution (SED) fitting. Results. We obtain a complete census of 23 massive dense cores, amongst which one is found to be IR-quiet and twelve are starless, representing very early stages of the star-formation process. Focussing on the starless MDCs, we have considered their evolutionary status, and suggest that only five of them are likely to form a high-mass star. Conclusions. We find that, contrarily to the case in NGC 6334, the NGC 6357 region does not exhibit any ridge or hub features that are believed to be crucial to the massive star formation process. This study adds support for an empirical model in which massive dense cores and protostars simultaneously accrete mass from the surrounding filaments. In addition, the massive star formation in NGC 6357 seems to have stopped and the hottest stars in Pismis 24 have disrupted the filaments.


Sign in / Sign up

Export Citation Format

Share Document