scholarly journals A (Sub)Millimeter survey of massive star-forming regions identified by the ISOPHOT Serendipity Survey (ISOSS)

2006 ◽  
Vol 2 (S237) ◽  
pp. 424-424
Author(s):  
Martin Hennemann ◽  
Stephan M. Birkmann ◽  
Oliver Krause ◽  
Dietrich Lemke

AbstractA sample of potential massive starforming regions identified at 170 m by ISO was observed in the submillimeter and millimeter regime. These observations allow us to infer physical properties of the molecular cloud cores. Two sources are presented in detail: ISOSS J23053+5953 and J183640221 show viable candidates for massive protocluster cores. Our analysis shows very low temperatures and low levels of turbulence of the major mass fraction in the molecular cloud cores besides active star formation at an early evolutionary stage. These conditions seem similar to the low mass case and may precede phases of luminous infrared emission observed towards young massive protostars.

2018 ◽  
Vol 14 (S345) ◽  
pp. 371-372
Author(s):  
R. Bögner ◽  
T. Csengeri ◽  
M. Wienen ◽  
N. Schneider ◽  
J. Montillaud ◽  
...  

AbstractRecent theories on the formation of the Solar System turned the attention to the study of low mass cloud cores in massive star forming regions. The Rosette Molecular Cloud is a well-known star forming area having highly filamentary structure with dense cores covering a wide range of masses. These pre- and protostellar cores were observed by Herschel and key core properties were derived from its data. With the Effelsberg 100m telescope a sample of these cores with masses ranging between 3-40 M⊙ were observed in ammonia inversion lines. In this work we are examining the correlations between these two datasets with the aim of gaining insight of the processes behind the star formation of the region.


2012 ◽  
Vol 8 (S292) ◽  
pp. 107-107
Author(s):  
Kazuhisa Kamegai ◽  
Takeshi Sakai ◽  
Nami Sakai ◽  
Tomoya Hirota ◽  
Satoshi Yamamoto

AbstractSubmillimeter-wave observations of complex organic molecules toward southern massive star forming regions were carried out with ASTE 10m telescope. Methyl formate (HCOOCH3) and dimethyl ether (CH3OCH3) were detected in some molecular cloud cores with young protostars. Differences in chemical composition among neighboring cores were also found.


2002 ◽  
Vol 12 ◽  
pp. 143-145 ◽  
Author(s):  
Lee G. Mundy ◽  
Friedrich Wyrowski ◽  
Sarah Watt

Millimeter and submillimeter wavelength images of massive star-forming regions are uncovering the natal material distribution and revealing the complexities of their circumstellar environments on size scales from parsecs to 100’s of AU. Progress in these areas has been slower than for low-mass stars because massive stars are more distant, and because they are gregarious siblings with different evolutionary stages that can co-exist even within a core. Nevertheless, observational goals for the near future include the characterization of an early evolutionary sequence for massive stars, determination if the accretion process and formation sequence for massive stars is similar to that of low-mass stars, and understanding of the role of triggering events in massive star formation.


2009 ◽  
Vol 698 (1) ◽  
pp. 488-501 ◽  
Author(s):  
Esteban F. E. Morales ◽  
Diego Mardones ◽  
Guido Garay ◽  
Kate J. Brooks ◽  
Jaime E. Pineda

1994 ◽  
Vol 140 ◽  
pp. 60-61
Author(s):  
Takahiro Iwata ◽  
Hiroshi Takaba ◽  
Kin-Ya Matsumoto ◽  
Seiji Kameno ◽  
Noriyuki Kawaguchi

A molecular outflow is one of the most conspicuous active phenomena associated with protostars, and the kinetic energy of its outflowing mass is as large as that of random motions of ambient molecular cloud, which suggests that outflow has dynamically influence on ambient molecular gas. Possible observational evidence which suggests the existence of dynamical interaction between molecular outflow and ambient molecular cloud has been detected in several star forming regions (Fukui et al. 1986; Iwata et al. 1988). Recent detections of H2O maser emission associated with low-mass protostars (e.g. Comoretto et al. 1990) also suggest that there still exist active phenomena in the low-mass star forming regions.Molecular outflow ρ Oph-East, discovered toward a low-mass protostar IRAS 16293-2422 (Fukui et al. 1986), has been known as a site of dynamical interaction between molecular outflowing gas and ambient molecular cloud by CO and NH3 observation (Mizuno et al. 1990). Existence of several strong H2O maser spots (Wilking & Claussen 1987; Wotten 1989; Terebey et al. 1992) also suggests that active phenomena are occurring in this region. In this paper, we report our result of H2O maser observation for molecular outflow ρ Oph-East with milli-arcsecond resolution by VLBI.


2018 ◽  
Vol 615 ◽  
pp. A88 ◽  
Author(s):  
Eva G. Bøgelund ◽  
Brett A. McGuire ◽  
Niels F. W. Ligterink ◽  
Vianney Taquet ◽  
Crystal L. Brogan ◽  
...  

Context. The abundance of deuterated molecules in a star-forming region is sensitive to the environment in which they are formed. Deuteration fractions, in other words the ratio of a species containing D to its hydrogenated counterpart, therefore provide a powerful tool for studying the physical and chemical evolution of a star-forming system. While local low-mass star-forming regions show very high deuteration ratios, much lower fractions are observed towards Orion and the Galactic centre. Astration of deuterium has been suggested as a possible cause for low deuteration in the Galactic centre. Aims. We derive methanol deuteration fractions at a number of locations towards the high-mass star-forming region NGC 6334I, located at a mean distance of 1.3 kpc, and discuss how these can shed light on the conditions prevailing during its formation. Methods. We use high sensitivity, high spatial and spectral resolution observations obtained with the Atacama Large Millimeter/ submillimeter Array to study transitions of the less abundant, optically thin, methanol-isotopologues: 13CH3OH, CH318OH, CH2DOH and CH3OD, detected towards NGC 6334I. Assuming local thermodynamic equilibrium (LTE) and excitation temperatures of ~120–330 K, we derive column densities for each of the species and use these to infer CH2DOH/CH3OH and CH3OD/CH3OH fractions. Results. We derive column densities in a range of (0.8–8.3) × 1017 cm−2 for 13CH3OH, (0.13–3.4) × 1017 cm−2 for CH318OH, (0.03–1.63) × 1017 cm−2 for CH2DOH and (0.15–5.5) × 1017 cm−2 for CH3OD in a ~1″ beam. Interestingly, the column densities of CH3OD are consistently higher than those of CH2DOH throughout the region by factors of 2–15. We calculate the CH2DOH to CH3OH and CH3OD to CH3OH ratios for each of the sampled locations in NGC 6334I. These values range from 0.03% to 0.34% for CH2DOH and from 0.27% to 1.07% for CH3OD if we use the 13C isotope of methanol as a standard; using the 18 O-methanol as a standard, decreases the ratios by factors of between two and three. Conclusions. All regions studied in this work show CH2DOH/CH3OH as well as CH2DOH/CH3OD values that are considerably lower than those derived towards low-mass star-forming regions and slightly lower than those derived for the high-mass star-forming regions in Orion and the Galactic centre. The low ratios indicate a grain surface temperature during formation ~30 K, for which the efficiency of the formation of deuterated species is significantly reduced. Therefore, astration of deuterium in the Galactic centre cannot be the explanation for its low deuteration ratio but rather the high temperatures characterising the region.


2014 ◽  
Vol 443 (1) ◽  
pp. 275-287 ◽  
Author(s):  
Zainab Awad ◽  
Serena Viti ◽  
Estelle Bayet ◽  
Paola Caselli

1994 ◽  
Vol 161 ◽  
pp. 470-472
Author(s):  
M. Kun

Radio molecular observations in the millimeter wavelength region in the last decade have revealed a number of giant molecular cloud complexes at relatively high galactic latitudes. Examples for such cloud complexes are Cepheus Flare (Lebrun 1986), and Ursa Major and Camelopardalis clouds (Heithausen et al. 1993). Because of their high galactic latitudes, these cloud complexes probably belong to the nearest molecular clouds and among them we may find some nearby regions of low-mass star formation.


2012 ◽  
Vol 8 (S287) ◽  
pp. 377-385 ◽  
Author(s):  
José M. Torrelles ◽  
José F. Gómez ◽  
Nimesh A. Patel ◽  
Salvador Curiel ◽  
Guillem Anglada ◽  
...  

AbstractVLBI multi-epoch water maser observations are a powerful tool to study the gas very close to the central engine responsible for the phenomena associated with the early evolution of massive protostars. In this paper we present a summary of the main observational results obtained toward the massive star-forming regions of Cepheus A and W75N. These observations revealed unexpected phenomena in the earliest stages of evolution of massive objects (e.g., non-collimated “short-lived” pulsed ejections in different massive protostars), and provided new insights in the study of the dynamic scenario of the formation of high-mass stars (e.g., simultaneous presence of a jet and wide-angle outflow in the massive object Cep A HW2, similar to what is observed in low-mass protostars). In addition, with these observations it has been possible to identify new, previously unseen centers of high-mass star formation through outflow activity.


2010 ◽  
Vol 717 (2) ◽  
pp. 1157-1180 ◽  
Author(s):  
Miranda K. Dunham ◽  
Erik Rosolowsky ◽  
Neal J. Evans ◽  
Claudia J. Cyganowski ◽  
James Aguirre ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document