scholarly journals Star Formation in Young Cluster NGC 1893

2007 ◽  
Vol 3 (S246) ◽  
pp. 73-74
Author(s):  
Saurabh Sharma ◽  
A. K. Pandey ◽  
D. K. Ojha ◽  
W. P. Chen ◽  
S. K. Ghosh ◽  
...  

AbstractWe have carried out a multi-wavelength study of the star forming region NGC 1893 to make a comprehensive exploration of the effects of massive stars on low mass star formation. Using deep optical U BV RI broad band, Hα narrow band photometry and slit-less spectroscopy along with archival data from the surveys such as 2MASS, MSX, IRAS and NVSS, we have studied the region to understand the star formation scenario in the region.

2009 ◽  
Vol 5 (H15) ◽  
pp. 406-407
Author(s):  
Doug Johnstone

AbstractCoordinated multi-wavelength surveys of molecular clouds are providing strong constraints on the physical conditions within low-mass star-forming regions. In this manner, Perseus and Ophiuchus have been exceptional laboratories for testing the earliest phases of star formation. Highlights of these results are: (1) dense cores form only in high column density regions, (2) dense cores contain only a few percent of the cloud mass, (3) the mass distribution of the dense cores is similar to the IMF, (4) the more massive cores are most likely to contain embedded protostars, and (5) the kinematics of the dense cores and the bulk gas show significant coupling.


2010 ◽  
Vol 6 (S270) ◽  
pp. 103-106
Author(s):  
R. Rao ◽  
J.-M. Girart ◽  
D. P. Marrone

AbstractThere have been a number of theoretical and computational models which state that magnetic fields play an important role in the process of star formation. Competing theories instead postulate that it is turbulence which is dominant and magnetic fields are weak. The recent installation of a polarimetry system at the Submillimeter Array (SMA) has enabled us to conduct observations that could potentially distinguish between the two theories. Some of the nearby low mass star forming regions show hour-glass shaped magnetic field structures that are consistent with theoretical models in which the magnetic field plays a dominant role. However, there are other similar regions where no significant polarization is detected. Future polarimetry observations made by the Submillimeter Array should be able to increase the sample of observed regions. These measurements will allow us to address observationally the important question of the role of magnetic fields and/or turbulence in the process of star formation.


Author(s):  
Kazuki Tokuda ◽  
Kengo Tachihara ◽  
Kazuya Saigo ◽  
Phillipe André ◽  
Yosuke Miyamoto ◽  
...  

Abstract The formation scenario of brown dwarfs is still unclear because observational studies to investigate its initial condition are quite limited. Our systematic survey of nearby low-mass star-forming regions using the Atacama Compact Array (aka the Morita array) and the IRAM 30-m telescope in 1.2 mm continuum has identified a centrally concentrated starless condensation with a central H2 volume density of ∼106 cm−3, MC5-N, connected to a narrow (width ∼0.03 pc) filamentary cloud in the Taurus L1495 region. The mass of the core is $\sim {0.2\!-\!0.4}\, M_{\odot }$, which is an order of magnitude smaller than typical low-mass pre-stellar cores. Taking into account a typical core to star formation efficiency for pre-stellar cores (∼20%–40%) in nearby molecular clouds, brown dwarf(s) or very low-mass star(s) may be going to be formed in this core. We have found possible substructures at the high-density portion of the core, although much higher angular resolution observation is needed to clearly confirm them. The subsequent N2H+ and N2D+ observations using the Nobeyama 45-m telescope have confirmed the high-deuterium fractionation (∼30%). These dynamically and chemically evolved features indicate that this core is on the verge of proto-brown dwarf or very low-mass star formation and is an ideal source to investigate the initial conditions of such low-mass objects via gravitational collapse and/or fragmentation of the filamentary cloud complex.


2009 ◽  
Vol 707 (2) ◽  
pp. 1023-1033 ◽  
Author(s):  
Enrique Vázquez-Semadeni ◽  
Gilberto C. Gómez ◽  
A.-Katharina Jappsen ◽  
Javier Ballesteros-Paredes ◽  
Ralf S. Klessen

2017 ◽  
Vol 13 (S336) ◽  
pp. 33-36
Author(s):  
S. Kalenskii ◽  
S. Kurtz ◽  
P. Hofner ◽  
P. Bergman ◽  
C.M. Walmsley ◽  
...  

AbstractWe present a review of the properties of Class I methanol masers detected in low-mass star forming regions (LMSFRs). These masers, henceforth called LMMIs, are associated with postshock gas in the lobes of chemically active outflows in LMSFRs NGC1333, NGC2023, HH25, and L1157. LMMIs share the main properties with powerful masers in regions of massive star formation and are a low-luminosity edge of the total Class I maser population. However, the exploration of just these objects may push forward the exploration of Class I masers, since many LMSFRs are located only 200–300 pc from the Sun, making it possible to study associated objects in detail. EVLA observations with a 0.2″ spatial resolution show that the maser images consist of unresolved or barely resolved spots with brightness temperatures up to 5 × 105 K. The results are “marginally” consistent with the turbulent model of maser emission.


2019 ◽  
Vol 626 ◽  
pp. A132 ◽  
Author(s):  
J. Molet ◽  
N. Brouillet ◽  
T. Nony ◽  
A. Gusdorf ◽  
F. Motte ◽  
...  

Context. High-mass analogues of low-mass prestellar cores are searched for to constrain the models of high-mass star formation. Several high-mass cores, at various evolutionary stages, have been recently identified towards the massive star-forming region W43-MM1 and amongst them a high-mass prestellar core candidate. Aims. We aim to characterise the chemistry in this high-mass prestellar core candidate, referred to as W43-MM1 core #6, and its environment. Methods. Using ALMA high-spatial resolution data of W43-MM1, we have studied the molecular content of core #6 and a neighbouring high-mass protostellar core, referred to as #3, which is similar in size and mass to core #6. We first subtracted the continuum emission using a method based on the density distribution of the intensities on each pixel. Then, from the distribution of detected molecules, we identified the molecules centred on the prestellar core candidate (core #6) and those associated to shocks related to outflows and filament formation. Then we constrained the column densities and temperatures of the molecules detected towards the two cores. Results. While core #3 appears to contain a hot core with a temperature of about 190 K, core #6 seems to have a lower temperature in the range from 20 to 90 K from a rotational diagram analysis. We have considered different source sizes for core #6 and the comparison of the abundances of the detected molecules towards the core with various interstellar sources shows that it is compatible with a core of size 1000 au with T = 20−90 K or a core of size 500 au with T ~ 80 K. Conclusions. Core #6 of W43-MM1 remains one of the best high-mass prestellar core candidates even if we cannot exclude that it is at the very beginning of the protostellar phase of high-mass star formation.


1994 ◽  
Vol 161 ◽  
pp. 470-472
Author(s):  
M. Kun

Radio molecular observations in the millimeter wavelength region in the last decade have revealed a number of giant molecular cloud complexes at relatively high galactic latitudes. Examples for such cloud complexes are Cepheus Flare (Lebrun 1986), and Ursa Major and Camelopardalis clouds (Heithausen et al. 1993). Because of their high galactic latitudes, these cloud complexes probably belong to the nearest molecular clouds and among them we may find some nearby regions of low-mass star formation.


2018 ◽  
Vol 14 (S345) ◽  
pp. 27-33
Author(s):  
Josefa E. Großschedl ◽  
João Alves ◽  
Stefan Meingast ◽  
Birgit Hasenberger

AbstractThe giant molecular cloud Orion A is the closest massive star-forming region to earth (d ∼ 400 pc). It contains the rich Orion Nebula Cluster (ONC) in the North, and low-mass star-forming regions (L1641, L1647) to the South. To get a better understanding of the differences in star formation activity, we perform an analysis of the gas mass distribution and star formation rate across the cloud. We find that the gas is roughly uniformly distributed, while, oddly, the ONC region produced about a factor of ten more stars compared to the rest of the cloud. For a better interpretation of this phenomenon, we use Gaia DR2 parallaxes, to analyse distances of young stellar objects, using them as proxy for cloud distances. We find that the ONC region indeed lies at about 400 pc while the low-mass star-forming parts are inclined about 70∘ from the plane of the sky reaching until ∼470 pc. With this we estimate that Orion A is an about 90 pc long filamentary cloud (about twice as long as previously assumed), with its “Head” (the ONC region) being “bent” and oriented towards the galactic mid-plane. This striking new view allows us to perform a more robust analysis of this important star-forming region in the future.


2010 ◽  
Vol 6 (S270) ◽  
pp. 65-72
Author(s):  
Masahiro N. Machida

AbstractIn star forming regions, we can observe different evolutionary stages of various objects and phenomena such as molecular clouds, protostellar jets and outflows, circumstellar disks, and protostars. However, it is difficult to directly observe the star formation process itself, because it is veiled by the dense infalling envelope. Numerical simulations can unveil the star formation process in the collapsing gas cloud. Recently, some studies showed protostar formation from the prestellar core stage, in which both molecular clouds and protostars are resolved with sufficient spatial resolution. These simulations showed fragmentation and binary formation, outflow and jet driving, and circumstellar disk formation in the collapsing gas clouds. In addition, the angular momentum transfer and dissipation process of the magnetic field in the star formation process were investigated. In this paper, I review recent developments in numerical simulations of low-mass star formation.


Sign in / Sign up

Export Citation Format

Share Document