scholarly journals Molecular analysis of a high-mass prestellar core candidate in W43-MM1

2019 ◽  
Vol 626 ◽  
pp. A132 ◽  
Author(s):  
J. Molet ◽  
N. Brouillet ◽  
T. Nony ◽  
A. Gusdorf ◽  
F. Motte ◽  
...  

Context. High-mass analogues of low-mass prestellar cores are searched for to constrain the models of high-mass star formation. Several high-mass cores, at various evolutionary stages, have been recently identified towards the massive star-forming region W43-MM1 and amongst them a high-mass prestellar core candidate. Aims. We aim to characterise the chemistry in this high-mass prestellar core candidate, referred to as W43-MM1 core #6, and its environment. Methods. Using ALMA high-spatial resolution data of W43-MM1, we have studied the molecular content of core #6 and a neighbouring high-mass protostellar core, referred to as #3, which is similar in size and mass to core #6. We first subtracted the continuum emission using a method based on the density distribution of the intensities on each pixel. Then, from the distribution of detected molecules, we identified the molecules centred on the prestellar core candidate (core #6) and those associated to shocks related to outflows and filament formation. Then we constrained the column densities and temperatures of the molecules detected towards the two cores. Results. While core #3 appears to contain a hot core with a temperature of about 190 K, core #6 seems to have a lower temperature in the range from 20 to 90 K from a rotational diagram analysis. We have considered different source sizes for core #6 and the comparison of the abundances of the detected molecules towards the core with various interstellar sources shows that it is compatible with a core of size 1000 au with T = 20−90 K or a core of size 500 au with T ~ 80 K. Conclusions. Core #6 of W43-MM1 remains one of the best high-mass prestellar core candidates even if we cannot exclude that it is at the very beginning of the protostellar phase of high-mass star formation.

2012 ◽  
Vol 8 (S287) ◽  
pp. 182-183
Author(s):  
V. Migenes ◽  
I. T. Rodríguez ◽  
M. A. Trinidad

AbstractWe present and discuss VLA-EVLA high-sensitivity and spatial resolution observations of Water Vapor MASERs and continuum emission towards two sources that have been proposed in the literature to be high-mass star forming regions: IRAS 19217+1651 and 23151+5912. Our results indicate the presence of disks which can confirm that these regions are high-mass star forming regions.


2018 ◽  
Vol 617 ◽  
pp. A100 ◽  
Author(s):  
H. Beuther ◽  
J. C. Mottram ◽  
A. Ahmadi ◽  
F. Bosco ◽  
H. Linz ◽  
...  

Context. High-mass stars form in clusters, but neither the early fragmentation processes nor the detailed physical processes leading to the most massive stars are well understood. Aims. We aim to understand the fragmentation, as well as the disk formation, outflow generation, and chemical processes during high-mass star formation on spatial scales of individual cores. Methods. Using the IRAM Northern Extended Millimeter Array (NOEMA) in combination with the 30 m telescope, we have observed in the IRAM large program CORE the 1.37 mm continuum and spectral line emission at high angular resolution (~0.4″) for a sample of 20 well-known high-mass star-forming regions with distances below 5.5 kpc and luminosities larger than 104 L⊙. Results. We present the overall survey scope, the selected sample, the observational setup, and the main goals of CORE. Scientifically, we concentrated on the mm continuum emission on scales on the order of 1000 AU. We detect strong mm continuum emission from all regions, mostly due to the emission from cold dust. The fragmentation properties of the sample are diverse. We see extremes where some regions are dominated by a single high-mass core whereas others fragment into as many as 20 cores. A minimum-spanning-tree analysis finds fragmentation at scales on the order of the thermal Jeans length or smaller suggesting that turbulent fragmentation is less important than thermal gravitational fragmentation. The diversity of highly fragmented vs. singular regions can be explained by varying initial density structures and/or different initial magnetic field strengths. Conclusions. A large sample of high-mass star-forming regions at high spatial resolution allows us to study the fragmentation properties of young cluster-forming regions. The smallest observed separations between cores are found around the angular resolution limit which indicates that further fragmentation likely takes place on even smaller spatial scales. The CORE project with its numerous spectral line detections will address a diverse set of important physical and chemical questions in the field of high-mass star formation.


2020 ◽  
Vol 634 ◽  
pp. A115
Author(s):  
O. Miettinen

Context. Initial conditions and very early stages of star formation can be probed through spectroscopic observations of deuterated molecular species Aims. We aim to determine the ortho-H2D+ properties (e.g. column density and fractional abundance with respect to H2) in a sample of dense cores in the Orion B9 star-forming filament, and to compare those with the previously determined source characteristics, in particular with the gas kinetic temperature, [N2D+]/[N2H+] deuterium fractionation, and level of CO depletion. Methods. We used the Atacama Pathfinder EXperiment (APEX) telescope to observe the 372 GHz o-H2D+(JKa, Kc = 11, 0−11, 1) line towards three prestellar cores and three protostellar cores in Orion B9. We also employed our previous APEX observations of C17O, C18O, N2H+, and N2D+ line emission, and 870 μm dust continuum emission towards the target sources. Results. The o-H2D+(11, 0−11, 1) line was detected in all three prestellar cores, but in only one of the protostellar cores. The corresponding o-H2D+ abundances were derived to be ~ (12−30) × 10−11 and ~ 6 × 10−11. Two additional spectral lines, DCO+(5−4) and N2H+(4−3), were detected in the observed frequency bands with high detection rates of 100 and 83%, respectively. We did not find any significant correlations among the explored parameters, although our results are mostly consistent with theoretical expectations. Also, the Orion B9 cores were found to be consistent with the relationship between theo-H2D+ abundance and gas temperature obeyed by other low-mass dense cores. The o-H2D+ abundance was found to decrease as the core evolves. Conclusions. The o-H2D+ abundances in the Orion B9 cores are in line with those found in other low-mass dense cores and larger than derived for high-mass star-forming regions. The higher o-H2D+ abundance in prestellar cores compared to that in cores hosting protostars is to be expected from chemical reactions where higher concentrations of gas-phase CO and elevated gas temperature accelerate the destruction of H2D+. The validity of using the [o-H2D+]/[N2D+] abundance ratio as an evolutionary indicator, which has been proposed for massive clumps, remains to be determined when applied to these target cores. Similarly, the behaviour of the [o-H2D+]/[DCO+] ratio as the source evolves was found to be ambiguous. Still larger samples and observations of additional deuterated species are needed to explore these potential evolutionary indicators further. The low radial velocity of the line emission from one of the targeted prestellar cores, SMM 7 (~ 3.6 km s−1 versus the systemic Orion B9 velocity of ~ 9 km s−1), suggests that it is a chance superposition seen towards Orion B9. Overall, as located in a dynamic environment of the Orion B molecular cloud, the Orion B9 filament provides an interesting target system to investigate the deuterium-based chemistry, and further observations of species like para-H2D+ and D2H+ would be of particular interest.


1997 ◽  
Vol 182 ◽  
pp. 537-549
Author(s):  
T. W. Hartquist ◽  
J. E. Dyson

Structures like the clumps identified in the CO maps of the Rosette Molecular Cloud and the dense cores such as those in B5, a cluster of cores and young low-mass stars, are key to considerations of star formation. Whether star formation is a self-inducing process or one that causes itself to turn off depends greatly on whether the responses of the interclump and intercore media to young stars cause the collapse of clumps or cores to be faster than their ablation. We present a naive introduction to the lengthscales over which such responses are significant, mention ways in which the responses might induce collapse, review some of the little that is known of how flows of media around clumps and cores ablate them, and then return to the issue of the lengthscales over which such responses are significant by considering the global properties of mass-loaded flows in clumpy star forming regions.


2018 ◽  
Vol 618 ◽  
pp. L5 ◽  
Author(s):  
T. Nony ◽  
F. Louvet ◽  
F. Motte ◽  
J. Molet ◽  
K. Marsh ◽  
...  

Aims. To constrain the physical processes that lead to the birth of high-mass stars it is mandatory to study the very first stages of their formation. We search for high-mass analogs of low-mass prestellar cores in W43-MM1. Methods. We conducted a 1.3 mm ALMA mosaic of the complete W43-MM1 cloud, which has revealed numerous cores with ~2000 au FWHM sizes. We investigated the nature of cores located at the tip of the main filament, where the clustering is minimum. We used the continuum emission to measure the core masses and the 13CS(5-4) line emission to estimate their turbulence level. We also investigated the prestellar or protostellar nature of these cores by searching for outflow signatures traced by CO(2-1) and SiO(5-4) line emission, and for molecular complexity typical of embedded hot cores. Results. Two high-mass cores of ~1300 au diameter and ~60 M⊙ mass are observed to be turbulent but gravitationally bound. One drives outflows and is associated with a hot core. The other core, W43-MM1#6, does not yet reveal any star formation activity and thus is an excellent high-mass prestellar core candidate.


2012 ◽  
Vol 8 (S287) ◽  
pp. 161-165
Author(s):  
S. V. Kalenskii ◽  
V. I. Slysh ◽  
L. E. B. Johansson ◽  
P. Bergman ◽  
S. Kurtz ◽  
...  

AbstractFour Class I maser sources were detected at 44, 84, and 95 GHz toward chemically rich outflows in the regions of low-mass star formation NGC 1333I4A, NGC 1333I2A, HH25, and L1157. One more maser was found at 36 GHz toward a similar outflow, NGC 2023. Flux densities of the newly detected masers are no more than 18 Jy, being much lower than those of strong masers in regions of high-mass star formation. The brightness temperatures of the strongest peaks in NGC 1333I4A, HH25, and L1157 at 44 GHz are higher than 2000 K, whereas that of the peak in NGC 1333I2A is only 176 K. However, a rotational diagram analysis showed that the latter source is also a maser. The main properties of the newly detected masers are similar to those of Class I methanol masers in regions of massive star formation. The former masers are likely to be an extension of the latter maser population toward low luminosities of both the masers and the corresponding YSOs.


2019 ◽  
Vol 632 ◽  
pp. A83 ◽  
Author(s):  
Y. Shimajiri ◽  
Ph. André ◽  
E. Ntormousi ◽  
A. Men’shchikov ◽  
D. Arzoumanian ◽  
...  

Context. Herschel imaging surveys of galactic interstellar clouds support a paradigm for low-mass star formation in which dense molecular filaments play a crucial role. The detailed fragmentation properties of star-forming filaments remain poorly understood, however, and the validity of the filament paradigm in the intermediate- to high-mass regime is still unclear. Aims. Here, following up on an earlier 350 μm dust continuum study with the ArTéMiS camera on the APEX telescope, we investigate the detailed density and velocity structure of the main filament in the high-mass star-forming region NGC 6334. Methods. We conducted ALMA Band 3 observations in the 3.1 mm continuum and of the N2H+(1–0), HC5N(36–35), HNC(1–0), HC3N(10–9), CH3CCH(6–5), and H2CS(3–2) lines at an angular resolution of ~3′′, corresponding to 0.025 pc at a distance of 1.7 kpc. Results. The NGC 6334 filament was detected in both the 3.1 mm continuum and the N2H+, HC3N, HC5N, CH3CCH, and H2CS lines with ALMA. We identified twenty-six compact (<0.03 pc) dense cores at 3.1 mm and five velocity-coherent fiber-like features in N2H+ within the main filament. The typical length (~0.5 pc) of, and velocity difference (~0.8 km s−1) between, the fiber-like features of the NGC 6334 filament are reminiscent of the properties for the fibers of the low-mass star-forming filament B211/B213 in the Taurus cloud. Only two or three of the five velocity-coherent features are well aligned with the NGC 6334 filament and may represent genuine, fiber sub-structures; the other two features may trace accretion flows onto the main filament. The mass distribution of the ALMA 3.1 mm continuum cores has a peak at ~10 M⊙, which is an order of magnitude higher than the peak of the prestellar core mass function in nearby, low-mass star-forming clouds. The cores can be divided into seven groups, closely associated with dense clumps seen in the ArTéMiS 350 μm data. The projected separation between ALMA dense cores (0.03–0.1 pc) and the projected spacing between ArTéMiS clumps (0.2–0.3 pc) are roughly consistent with the effective Jeans length (0.08 ± 0.03 pc) in the filament and a physical scale of about four times the filament width, respectively, if the inclination angle of the filament to line of sight is ~30°. These two distinct separation scales are suggestive of a bimodal fragmentation process in the filament. Conclusions. Despite being one order of magnitude denser and more massive than the Taurus B211/B213 filament, the NGC 6334 filament has a density and velocity structure that is qualitatively very similar. The main difference is that the dense cores embedded in the NGC 6334 filament appear to be an order of magnitude denser and more massive than the cores in the Taurus filament. This suggests that dense molecular filaments may evolve and fragment in a similar manner in low- and high-mass star-forming regions, and that the filament paradigm may hold in the intermediate-mass (if not high-mass) star formation regime.


Author(s):  
A J Rigby ◽  
N Peretto ◽  
R Adam ◽  
P Ade ◽  
M Anderson ◽  
...  

Abstract Determining the mechanism by which high-mass stars are formed is essential for our understanding of the energy budget and chemical evolution of galaxies. By using the New IRAM KIDs Array 2 (NIKA2) camera on the Institut de Radio Astronomie Millimétrique (IRAM) 30-m telescope, we have conducted high-sensitivity and large-scale mapping of a fraction of the Galactic plane in order to search for signatures of the transition between the high- and low-mass star-forming modes. Here, we present the first results from the Galactic Star Formation with NIKA2 (GASTON) project, a Large Programme at the IRAM 30-m telescope which is mapping ≈2 deg2 of the inner Galactic plane (GP), centred on ℓ = 23${_{.}^{\circ}}$9, b = 0${_{.}^{\circ}}$05, as well as targets in Taurus and Ophiuchus in 1.15 and 2.00 mm continuum wavebands. In this paper we present the first of the GASTON GP data taken, and present initial science results. We conduct an extraction of structures from the 1.15 mm maps using a dendrogram analysis and, by comparison to the compact source catalogues from Herschel survey data, we identify a population of 321 previously-undetected clumps. Approximately 80 per cent of these new clumps are 70 μm-quiet, and may be considered as starless candidates. We find that this new population of clumps are less massive and cooler, on average, than clumps that have already been identified. Further, by classifying the full sample of clumps based upon their infrared-bright fraction – an indicator of evolutionary stage – we find evidence for clump mass growth, supporting models of clump-fed high-mass star formation.


2018 ◽  
Vol 609 ◽  
pp. A125 ◽  
Author(s):  
M. Wienen ◽  
F. Wyrowski ◽  
K. M. Menten ◽  
J. S. Urquhart ◽  
C. M. Walmsley ◽  
...  

Context. The initial conditions of molecular clumps in which high-mass stars form are poorly understood. In particular, a more detailed study of the earliest evolutionary phases is needed. The APEX Telescope Large Area Survey of the whole inner Galactic disk at 870 μm, ATLASGAL, has therefore been conducted to discover high-mass star-forming regions at different evolutionary phases. Aims. We derive properties such as velocities, rotational temperatures, column densities, and abundances of a large sample of southern ATLASGAL clumps in the fourth quadrant. Methods. Using the Parkes telescope, we observed the NH3 (1, 1) to (3, 3) inversion transitions towards 354 dust clumps detected by ATLASGAL within a Galactic longitude range between 300° and 359° and a latitude within ± 1.5°. For a subsample of 289 sources, the N2H+ (1–0) line was measured with the Mopra telescope. Results. We measured a median NH3 (1, 1) line width of ~ 2 km s-1, rotational temperatures from 12 to 28 K with a mean of 18 K, and source-averaged NH3 abundances from 1.6 × 10-6 to 10-8. For a subsample with detected NH3 (2, 2) hyperfine components, we found that the commonly used method to compute the (2, 2) optical depth from the (1, 1) optical depth and the (2, 2) to (1, 1) main beam brightness temperature ratio leads to an underestimation of the rotational temperature and column density. A larger median virial parameter of ~ 1 is determined using the broader N2H+ line width than is estimated from the NH3 line width of ~ 0.5 with a general trend of a decreasing virial parameter with increasing gas mass. We obtain a rising NH3 (1, 1)/N2H+ line-width ratio with increasing rotational temperature. Conclusions. A comparison of NH3 line parameters of ATLASGAL clumps to cores in nearby molecular clouds reveals smaller velocity dispersions in low-mass than high-mass star-forming regions and a warmer surrounding of ATLASGAL clumps than the surrounding of low-mass cores. The NH3 (1, 1) inversion transition of 49% of the sources shows hyperfine structure anomalies. The intensity ratio of the outer hyperfine structure lines with a median of 1.27 ± 0.03 and a standard deviation of 0.45 is significantly higher than 1, while the intensity ratios of the inner satellites with a median of 0.9 ± 0.02 and standard deviation of 0.3 and the sum of the inner and outer hyperfine components with a median of 1.06 ± 0.02 and standard deviation of 0.37 are closer to 1.


2020 ◽  
Vol 644 ◽  
pp. A34
Author(s):  
G. Sabatini ◽  
S. Bovino ◽  
A. Giannetti ◽  
F. Wyrowski ◽  
M. A. Órdenes ◽  
...  

Context. Deuteration has been suggested to be a reliable chemical clock of star-forming regions due to its strong dependence on density and temperature changes during cloud contraction. In particular, the H3+ isotopologues (e.g. ortho-H2D+) seem to act as good proxies of the evolutionary stages of the star formation process. While this has been widely explored in low-mass star-forming regions, in the high-mass counterparts only a few studies have been pursued, and the reliability of deuteration as a chemical clock remains inconclusive. Aims. We present a large sample of o-H2D+ observations in high-mass star-forming regions and discuss possible empirical correlations with relevant physical quantities to assess its role as a chronometer of star-forming regions through different evolutionary stages. Methods. APEX observations of the ground-state transition of o-H2D+ were analysed in a large sample of high-mass clumps selected from the ATLASGAL survey at different evolutionary stages. Column densities and beam-averaged abundances of o-H2D+ with respect to H2, X(o-H2D+), were obtained by modelling the spectra under the assumption of local thermodynamic equilibrium. Results. We detect 16 sources in o-H2D+ and find clear correlations between X(o-H2D+) and the clump bolometric luminosity and the dust temperature, while only a mild correlation is found with the CO-depletion factor. In addition, we see a clear correlation with the luminosity-to-mass ratio, which is known to trace the evolution of the star formation process. This would indicate that the deuterated forms of H3+ are more abundant in the very early stages of the star formation process and that deuteration is influenced by the time evolution of the clumps. In this respect, our findings would suggest that the X(o-H2D+) abundance is mainly affected by the thermal changes rather than density changes in the gas. We have employed these findings together with observations of H13CO+, DCO+, and C17O to provide an estimate of the cosmic-ray ionisation rate in a sub-sample of eight clumps based on recent analytical work. Conclusions. Our study presents the largest sample of o-H2D+ in star-forming regions to date. The results confirm that the deuteration process is strongly affected by temperature and suggests that o-H2D+ can be considered a reliable chemical clock during the star formation processes, as proved by its strong temporal dependence.


Sign in / Sign up

Export Citation Format

Share Document