scholarly journals Light deflection in the second post-Newtonian approximation of scalar-tensor theory of gravity

2007 ◽  
Vol 3 (S248) ◽  
pp. 401-402 ◽  
Author(s):  
P. Dong ◽  
W. T. Ni

AbstractIn this paper, we use the metric coefficients and the equation of motion in the 2nd post-Newtonian approximation in scalar-tensor theory including intermediate range gravity to derive the deflection of light and compare it with previous works. These results will be useful for precision astrometry missions like Gaia, SIM, and LATOR (Laser Astrometric Test Of Relativity) which aim at astrometry with micro-arcsecond and nano-arcsecond accuracies and a need for the 2nd post-Newtonian framework and ephemeris to determine the stellar and spacecraft positions.

2020 ◽  
Vol 80 (10) ◽  
Author(s):  
P. A. González ◽  
Marco Olivares ◽  
Eleftherios Papantonopoulos ◽  
Yerko Vásquez

AbstractWe study the motion of particles in the background of a scalar–tensor theory of gravity in which the scalar field is kinetically coupled to the Einstein tensor. We constrain the value of the derivative parameter z through solar system tests. By considering the perihelion precession we obtain the constraint $$\sqrt{z}/m_{\mathrm{p}} > 2.6\times 10^{12}$$ z / m p > 2.6 × 10 12  m, the gravitational redshift $$\frac{\sqrt{z}}{m_{\mathrm{p}}}>2.7\times 10^{\,10}$$ z m p > 2.7 × 10 10  m, the deflection of light $$\sqrt{z}/m_{\mathrm{p}} > 1.6 \times 10^{11}$$ z / m p > 1.6 × 10 11  m, and the gravitational time delay $$\sqrt{z}/m_{\mathrm{p}} > 7.9 \times 10^{12}$$ z / m p > 7.9 × 10 12  m; thereby, our results show that it is possible to constrain the value of the z parameter in agreement with the observational tests that have been considered.


2009 ◽  
Vol 43 (1) ◽  
pp. 171-180 ◽  
Author(s):  
Yi Xie ◽  
Wei-Tou Ni ◽  
Peng Dong ◽  
Tian-Yi Huang

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Nayem Sk ◽  
Abhik Kumar Sanyal

It has been shown earlier that Noether symmetry does not admit a form of corresponding to an action in which is coupled to scalar-tensor theory of gravity or even for pure theory of gravity taking anisotropic model into account. Here, we prove that theory of gravity does not admit Noether symmetry even if it is coupled to tachyonic field and considering a gauge in addition. To handle such a theory, a general conserved current has been constructed under a condition which decouples higher-order curvature part from the field part. This condition, in principle, solves for the scale-factor independently. Thus, cosmological evolution remains independent of the form of the chosen field, whether it is a scalar or a tachyon.


2004 ◽  
Vol 13 (02) ◽  
pp. 359-371 ◽  
Author(s):  
GIUSEPPE BASINI ◽  
MARCO RICCI ◽  
FULVIO BONGIORNO ◽  
SALVATORE CAPOZZIELLO

We investigate the weak-field limit of scalar-tensor theory of gravity and show that results are directly depending on the coupling and self-interaction potential of the scalar field. In particular, corrections are derived for the Newtonian potential. We discuss astrophysical applications of the results, in particular the flat rotation curves of spiral galaxies.


2018 ◽  
Vol 2018 (5) ◽  
Author(s):  
Ranajit Mandal ◽  
Chandramouli Sarkar ◽  
Abhik Kumar Sanyal

2014 ◽  
Vol 90 (12) ◽  
Author(s):  
Hector O. Silva ◽  
Hajime Sotani ◽  
Emanuele Berti ◽  
Michael Horbatsch

Sign in / Sign up

Export Citation Format

Share Document