precision astrometry
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 11)

H-INDEX

14
(FIVE YEARS 1)

Author(s):  
Fabien Malbet ◽  
Céline Boehm ◽  
Alberto Krone-Martins ◽  
Antonio Amorim ◽  
Guillem Anglada-Escudé ◽  
...  

AbstractSky survey telescopes and powerful targeted telescopes play complementary roles in astronomy. In order to investigate the nature and characteristics of the motions of very faint objects, a flexibly-pointed instrument capable of high astrometric accuracy is an ideal complement to current astrometric surveys and a unique tool for precision astrophysics. Such a space-based mission will push the frontier of precision astrometry from evidence of Earth-mass habitable worlds around the nearest stars, to distant Milky Way objects, and out to the Local Group of galaxies. As we enter the era of the James Webb Space Telescope and the new ground-based, adaptive-optics-enabled giant telescopes, by obtaining these high precision measurements on key objects that Gaia could not reach, a mission that focuses on high precision astrometry science can consolidate our theoretical understanding of the local Universe, enable extrapolation of physical processes to remote redshifts, and derive a much more consistent picture of cosmological evolution and the likely fate of our cosmos. Already several missions have been proposed to address the science case of faint objects in motion using high precision astrometry missions: NEAT proposed for the ESA M3 opportunity, micro-NEAT for the S1 opportunity, and Theia for the M4 and M5 opportunities. Additional new mission configurations adapted with technological innovations could be envisioned to pursue accurate measurements of these extremely small motions. The goal of this White Paper is to address the fundamental science questions that are at stake when we focus on the motions of faint sky objects and to briefly review instrumentation and mission profiles.


2021 ◽  
Vol 502 (4) ◽  
pp. 6216-6224
Author(s):  
Z J Zheng ◽  
Q Y Peng ◽  
F R Lin

ABSTRACT Gaia Data Release 2 (Gaia DR2) provides high accuracy and precision astrometric parameters (position, parallax, and proper motion) for more than 1 billion sources and is revolutionizing astrometry. For a fast-moving target such as an asteroid, with many stars in the field of view that are brighter than the faint limit magnitude of Gaia (21 Gmag), its measurement accuracy and precision can be greatly improved by taking advantage of Gaia reference stars. However, if we want to study the relative motions of cluster members, we could cross-match them in different epochs based on pixel positions. For both types of targets, the determination of optical field-angle distortion or called geometric distortion (GD) in this paper is important for image calibration especially when there are few reference stars to build a high-order plate model. For the former, the GD solution can be derived based on the astrometric catalogue’s position, while for the latter, a reference system called ‘master frame’ is constructed from these observations in pixel coordinates, and then the GD solution is derived. But, are the two GD solutions in agreement with each other? In this paper, two types of GD solutions, which are derived either from the Gaia DR2 catalogue or from the self-constructed master frame, are applied respectively for the observations taken by 1-m telescope at Yunnan Observatory. It is found that two GD solutions enable the precision to achieve a comparable level (∼10 mas) but their GD patterns are different. Synthetic distorted positions are generated for further investigation into the discrepancy between the two GD solutions. We aim to find the correlation and distinction between the two types of GD solutions and their applicability in high precision astrometry.


2020 ◽  
Vol 498 (1) ◽  
pp. L6-L10 ◽  
Author(s):  
Peter McGill ◽  
Andrew Everall ◽  
Douglas Boubert ◽  
Leigh C Smith

ABSTRACT Precision astrometry from the second Gaia data release has allowed astronomers to predict 5787 microlensing events, with 528 of these having maximums within the extended Gaia mission (J2014.5–J2026.5). Future analysis of the Gaiatime-series astrometry of these events will, in some cases, lead to precise gravitational mass measurements of the lens. We find that 61 per cent of events predicted during the extended Gaia mission with sources brighter than G  = 18 are likely to be spurious, with the background source in these cases commonly being either a duplicate detection or a binary companion of the lens. We present quality cuts to identify these spurious events and a revised list of microlensing event candidates. Our findings imply that half of the predictable astrometric microlensing events during the Gaiamission have yet to be identified.


2020 ◽  
Vol 638 ◽  
pp. A118
Author(s):  
S. P. Bos

Context. Photometric and astrometric monitoring of directly imaged exoplanets will deliver unique insights into their rotational periods, the distribution of cloud structures, weather, and orbital parameters. As the host star is occulted by the coronagraph, a speckle grid (SG) is introduced to serve as astrometric and photometric reference. Speckle grids are implemented as diffractive pupil-plane optics that generate artificial speckles at known location and brightness. Their performance is limited by the underlying speckle halo caused by evolving uncorrected wavefront errors. The speckle halo will interfere with the coherent SGs, affecting their photometric and astrometric precision. Aims. Our aim is to show that by imposing opposite amplitude or phase modulation on the opposite polarization states, a SG can be instantaneously incoherent with the underlying halo, greatly increasing the precision. We refer to these as vector speckle grids (VSGs). Methods. We derive analytically the mechanism by which the incoherency arises and explore the performance gain in idealised simulations under various atmospheric conditions. Results. We show that the VSG is completely incoherent for unpolarized light and that the fundamental limiting factor is the cross-talk between the speckles in the grid. In simulation, we find that for short-exposure images the VSG reaches a ∼0.3–0.8% photometric error and ∼3−10 × 10−3λ/D astrometric error, which is a performance increase of a factor ∼20 and ∼5, respectively. Furthermore, we outline how VSGs could be implemented using liquid-crystal technology to impose the geometric phase on the circular polarization states. Conclusions. The VSG is a promising new method for generating a photometric and astrometric reference SG that has a greatly increased astrometric and photometric precision.


Author(s):  
Richard J Wainscoat ◽  
Robert Weryk ◽  
Davide Farnocchia

2019 ◽  
Vol 490 (3) ◽  
pp. 3464-3475
Author(s):  
S Santos-Filho ◽  
M Assafin ◽  
B E Morgado ◽  
R Vieira-Martins ◽  
J I B Camargo ◽  
...  

ABSTRACT Doing high-precision astrometry on Uranus’ moons is currently quite challenging. No probes will orbit the system before 2040. New high-precision mutual phenomena measurements will only occur in 2050. Besides, Uranus is slowly passing through a sky region without many stars, which makes it difficult to map field of view (FOV) distortions below 50 mas. In this context, the new astrometric technique of mutual approximations comes in handy. It measures central instants at the closest approach between two moving satellites in the sky plane. Measurements are made on small portions of the FOV, benefiting from the so-called precision premium. Approximations and mutual phenomena share geometric principles and parameters, with similar precision in the central instant as indicated by first applications to the Jovian moons. However, mutual phenomena can only be observed at the planet’s equinoxes, while approximations always occur. Central instants do not depend on reference stars and are useful in orbit and ephemeris fittings. Here, we present results for 23 mutual approximations between the five main Uranus satellites observed in Brazil during 2015–2018 with a 1.6 m aperture telescope. Digital coronagraphy mitigated Uranus’ scattered light, improving measurements for Miranda, Ariel and Umbriel. We measured the impact parameter and relative velocity in milliarcseconds for the first time by using a variant of the method. Relative position errors, including Miranda, were 45 mas per coordinate, twice as good as in classical CCD astrometry for this satellite, and comparable to mutual phenomena. This shows the potential of mutual approximations for improving the current orbits and ephemerides of Uranus’ moons.


Author(s):  
Maxwell Service ◽  
Jessica R. Lu ◽  
Mark Chun ◽  
Ryuji Suzuki ◽  
Matthias Schoeck ◽  
...  

2019 ◽  
Vol 487 (2) ◽  
pp. 1653-1661 ◽  
Author(s):  
Indranil Banik ◽  
Pavel Kroupa

ABSTRACT The wide binary orbit of Proxima Centauri around α Centauri A and B differs significantly between Newtonian and Milgromian dynamics (MOND). By combining previous calculations of this effect with mock observations generated using a Monte Carlo procedure, we show that this prediction can be tested using high precision astrometry of Proxima Centauri. This requires ≈10 yr of observations at an individual epoch precision of $0.5 \, \mu\rm as$, within the design specifications of the proposed Theia mission. In general, the required duration should scale as the 2/5 power of the astrometric precision. A long-period planet could produce a MOND-like astrometric signal, but only if it has a particular ratio of mass to separation squared and a sky position close to the line segment connecting Proxima Centauri with α Centauri. Uncertainties in perspective effects should be small enough for this test if the absolute radial velocity of Proxima Centauri can be measured to within ≈10 m s−1, better than the present accuracy of 32 m s−1. We expect the required improvement to become feasible using radial velocity zero-points estimated from larger samples of close binaries, with the Sun providing an anchor. We demonstrate that possible astrometric microlensing of Proxima Centauri is unlikely to affect the results. We also discuss why it should be possible to find sufficiently astrometrically stable reference stars. Adequately, addressing these and other issues would enable a decisive test of gravity in the currently little explored low acceleration regime relevant to the dynamical discrepancies in galactic outskirts.


2019 ◽  
Vol 14 (S351) ◽  
pp. 389-394
Author(s):  
Anna Lisa Varri ◽  
Philip G. Breen ◽  
Douglas C. Heggie

AbstractThe blooming era of precision astrometry for Galactic studies truly brings the rich internal dynamics of globular clusters to the centre stage. But several aspects of our current understanding of fundamental collisional stellar dynamics cannot match such new-generation data and the theoretical ambitions they trigger. This rapidly evolving context offers the stimulus to address a number of old and new questions concerning the phase space properties of this class of stellar systems.


Sign in / Sign up

Export Citation Format

Share Document