scholarly journals What to Expect from Transiting Multiplanet Systems

2008 ◽  
Vol 4 (S253) ◽  
pp. 173-179 ◽  
Author(s):  
Daniel C. Fabrycky

AbstractSo far radial velocity measurements have discovered ~25 stars to host multiple planets. The statistics imply that many of the known hosts of transiting planets should have additional planets, yet none have been solidly detected. They will be soon, via complementary search methods of RV, transit-time variations of the known planet, and transits of the additional planet. When they are found, what can transit measurements add to studies of multiplanet dynamical evolution? First, mutual inclinations become measurable, for comparison to the solar system's disk-like configuration. Such measurements will give important constraints to planet-planet scattering models, just as the radial velocity measurements of eccentricity have done. Second, the Rossiter-McLaughlin effect measures stellar obliquity, which can be modified by two-planet dynamics with a tidally evolving inner planet. Third, transit-time variations are exquisitely sensitive to planets in mean motion resonance. Two planets differentially migrating in the disk can establish such resonances, and tidal evolution of the planets can break them, so the configuration and frequency of these resonances as a function of planetary parameters will constrain these processes.

2019 ◽  
Vol 158 (4) ◽  
pp. 136
Author(s):  
M. M. Rosenthal ◽  
W. Jacobson-Galan ◽  
B. Nelson ◽  
R. A. Murray-Clay ◽  
J. A. Burt ◽  
...  

2007 ◽  
Vol 3 (S249) ◽  
pp. 485-490 ◽  
Author(s):  
Li-Yong Zhou ◽  
Sylvio Ferraz-Mello ◽  
Yi-Sui Sun

AbstractWe report in this paper the numerical simulations of the capture into the 3:1 mean-motion resonance between the planets b and c in the 55 Cancri system. The results show that this resonance can be obtained by a differential planetary migration. The moderate initial eccentricities, relatively slower migration and suitable eccentricity damping rate increase significantly the probability of being trapped in this resonance. Otherwise, the system crosses the 3:1 commensurability avoiding resonance capture, to be eventually captured into a 2:1 resonance or some other higher-order resonances. After capture into resonance, the system can jump from one orbital configuration to another one if the migration continues, making a large region of the configuration space accessible for a resonance system. These investigations help us understand the diversity of resonance configurations and put some constraints on the early dynamical evolution of orbits in the extra-solar planetary systems.


2020 ◽  
Vol 492 (4) ◽  
pp. 6007-6018 ◽  
Author(s):  
Raúl O Chametla ◽  
Gennaro D’Angelo ◽  
Mauricio Reyes-Ruiz ◽  
F Javier Sánchez-Salcedo

ABSTRACT We study the dynamical evolution of Jupiter and Saturn embedded in a gaseous, solar nebula-type disc by means of hydrodynamics simulations with the fargo2d1d code. We study the evolution for different initial separations of the planets’ orbits, ΔaSJ, to investigate whether they become captured in mean motion resonance (MMR) and the direction of the subsequent migration of the planet (inwards or outwards). We also provide an assessment of the planet’s orbital dynamics at different epochs of Saturn’s growth. We find that the evolution of initially compact orbital configurations is dependent on the value of ΔaSJ. This implies that an evolution as that proposed in the Grand Tack model depends on the precise initial orbits of Jupiter and Saturn and on the time-scales for their formation. Capture in the 1:2 MMR and inward or (nearly) stalled migration are highly favoured. Within its limits, our work suggests that the reversed migration, associated with the resonance capture of Jupiter and Saturn, may be a low-probability evolutionary scenario, so that other planetary systems with giant planets are not expected to have experienced a Grand Tack-like evolutionary path.


2019 ◽  
Vol 622 ◽  
pp. L7 ◽  
Author(s):  
Trifon Trifonov ◽  
Jan Rybizki ◽  
Martin Kürster

Aims. We aim at the discovery of new planetary systems by exploiting the transit light-curve results from observations made in TESS orbital observatory Sectors 1 and 2 and validating them with precise Doppler measurements obtained from archival HARPS data. Methods. Taking advantage of the reported TESS transit events around GJ 143 (TOI 186) and HD 23472 (TOI 174), we modeled their HARPS precise Doppler measurements and derived orbital parameters for these two systems. Results. For the GJ 143 system, TESS has reported only a single transit, and thus its period is unconstrained from photometry. Our radial velocity analysis of GJ 143 reveals the full Keplerian solution of the system, which is consistent with an eccentric planet with a mass almost twice that of Neptune and a period of Pb = 35.59−0.1+0.1 days. Our estimates of the GJ 143 b planet are fully consistent with the transit timing from TESS. We confirm the two-planet system around HD 23472, which according to our analysis is composed of two Neptune-mass planets in a possible 5:3 mean motion resonance.


2019 ◽  
Vol 624 ◽  
pp. A38 ◽  
Author(s):  
M. Damasso ◽  
L. Zeng ◽  
L. Malavolta ◽  
A. Mayo ◽  
A. Sozzetti ◽  
...  

Context. K2-36 is a K dwarf orbited by two small (Rb = 1.43 ± 0.08 R⊕ and Rc = 3.2 ± 0.3 R⊕), close-in (ab = 0.022 au and ac = 0.054 au) transiting planets discovered by the Kepler/K2 space observatory. They are representatives of two distinct families of small planets (Rp < 4 R⊕) recently emerged from the analysis of Kepler data, with likely a different structure, composition and evolutionary pathways. Aims. We revise the fundamental stellar parameters and the sizes of the planets, and provide the first measurement of their masses and bulk densities, which we use to infer their structure and composition. Methods. We observed K2-36 with the HARPS-N spectrograph over ~3.5 yr, collecting 81 useful radial velocity measurements. The star is active, with evidence for increasing levels of magnetic activity during the observing time span. The radial velocity scatter is ~17 m s−1 due to the stellar activity contribution, which is much larger that the semi-amplitudes of the planetary signals. We tested different methods for mitigating the stellar activity contribution to the radial velocity time variations and measuring the planet masses with good precision. Results. We find that K2-36 is likely a ~1 Gyr old system, and by treating the stellar activity through a Gaussian process regression, we measured the planet masses mb = 3.9 ± 1.1 M⊕ and mc = 7.8 ± 2.3 M⊕. The derived planet bulk densities ρb = 7.2−2.1+2.5 g cm−3 and ρc = 1.3−0.5+0.7 g cm−3 point out that K2-36 b has a rocky, Earth-like composition, and K2-36 c is a low-density sub-Neptune. Conclusions. Composed of two planets with similar orbital separations but different densities, K2-36 represents an optimal laboratory for testing the role of the atmospheric escape in driving the evolution of close-in, low-mass planets after ~1 Gyr from their formation. Due to their similarities, we performed a preliminary comparative analysis between the systems K2-36 and Kepler-36, which we deem worthy of a more detailed investigation.


2019 ◽  
Vol 625 ◽  
pp. A31 ◽  
Author(s):  
René Heller ◽  
Kai Rodenbeck ◽  
Michael Hippke

We apply for the first time the transit least-squares (TLS) algorithm to search for new transiting exoplanets. TLS has been developed as a successor to the box least-squares (BLS) algorithm, which has served as a standard tool for the detection of periodic transits. In this proof-of-concept paper, we demonstrate that TLS finds small planets that have previously been missed. We show the capabilities of TLS using the K2 EVEREST-detrended light curve of the star K2-32 (EPIC 205071984), which has been known to have three transiting planets. TLS detects these known Neptune-sized planets K2-32 b, d, and c in an iterative search and finds an additional transit signal with a high signal detection efficiency (SDETLS) of 26.1 at a period of 4.34882−0.00075+0.00069 d. We show that this additional signal remains detectable (SDETLS = 13.2) with TLS in the K2SFF light curve of K2-32, which includes a less optimal detrending of the systematic trends. The signal is below common detection thresholds if searched with BLS in the K2SFF light curve (SDEBLS = 8.9), however, as in previous searches. Markov chain Monte Carlo sampling with the emcee software shows that the radius of this candidate is 1.01−0.09+0.10 R⊕. We analyzed its phase-folded transit light curve using the vespa software and calculated a false-positive probability FPP = 3.1  × 10−3. Taking into account the multiplicity boost of the system, we estimate an FPP < 3.1  × 10−4, which formally validates K2-32 e as a planet. K2-32 now hosts at least four planets that are very close to a 1:2:5:7 mean motion resonance chain. The offset of the orbital periods of K2-32 e and b from a 1:2 mean motion resonance agrees very well with the sample of transiting multiplanet systems from Kepler, lending further credence to the planetary nature of K2-32 e. We expect that TLS can find many more transits of Earth-sized and even smaller planets in the Kepler and K2 data that have so far remained undetected with algorithms that search for box-like signals.


2021 ◽  
Vol 162 (6) ◽  
pp. 283
Author(s):  
Trifon Trifonov ◽  
Rafael Brahm ◽  
Nestor Espinoza ◽  
Thomas Henning ◽  
Andrés Jordán ◽  
...  

Abstract TOI-2202 b is a transiting warm Jovian-mass planet with an orbital period of P = 11.91 days identified from the Full Frame Images data of five different sectors of the TESS mission. Ten TESS transits of TOI-2202 b combined with three follow-up light curves obtained with the CHAT robotic telescope show strong transit timing variations (TTVs) with an amplitude of about 1.2 hr. Radial velocity follow-up with FEROS, HARPS, and PFS confirms the planetary nature of the transiting candidate (a b = 0.096 ± 0.001 au, m b = 0.98 ± 0.06 M Jup), and a dynamical analysis of RVs, transit data, and TTVs points to an outer Saturn-mass companion (a c = 0.155 ± 0.002 au, m c = 0.37 ± 0.10 M Jup) near the 2:1 mean motion resonance. Our stellar modeling indicates that TOI-2202 is an early K-type star with a mass of 0.82 M ⊙, a radius of 0.79 R ⊙, and solar-like metallicity. The TOI-2202 system is very interesting because of the two warm Jovian-mass planets near the 2:1 mean motion resonance, which is a rare configuration, and their formation and dynamical evolution are still not well understood.


Author(s):  
Kazantsev Anatolii ◽  
Kazantseva Lilia

ABSTRACT The paper analyses possible transfers of bodies from the main asteroid belt (MBA) to the Centaur region. The orbits of asteroids in the 2:1 mean motion resonance (MMR) with Jupiter are analysed. We selected the asteroids that are in resonant orbits with e &gt; 0.3 whose absolute magnitudes H do not exceed 16 m. The total number of the orbits amounts to 152. Numerical calculations were performed to evaluate the evolution of the orbits over 100,000-year time interval with projects for the future. Six bodies are found to have moved from the 2:1 commensurability zone to the Centaur population. The transfer time of these bodies to the Centaur zone ranges from 4,600 to 70,000 yr. Such transfers occur after orbits leave the resonance and the bodies approach Jupiter Where after reaching sufficient orbital eccentricities bodies approach a terrestrial planet, their orbits go out of the MMR. Accuracy estimations are carried out to confirm the possible asteroid transfers to the Centaur region.


2018 ◽  
Vol 155 (3) ◽  
pp. 106 ◽  
Author(s):  
Sarah Millholland ◽  
Gregory Laughlin ◽  
Johanna Teske ◽  
R. Paul Butler ◽  
Jennifer Burt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document