planetary migration
Recently Published Documents


TOTAL DOCUMENTS

96
(FIVE YEARS 21)

H-INDEX

26
(FIVE YEARS 4)

2021 ◽  
Vol 162 (6) ◽  
pp. 272
Author(s):  
Xiang-Ning Su ◽  
Ji-Wei Xie ◽  
Ji-Lin Zhou ◽  
Philippe Thebault

Abstract Although the sample of exoplanets in binaries has been greatly expanded, the sample heterogeneity and observational bias are obstacles toward a clear figure of exoplanet demographics in the binary environment. To overcome the obstacles, we conduct a statistical study that focuses on S-type (circumstellar) planetary systems detected by the radial-velocity (RV) method. We try to account for observational biases by estimating, from available RV data, planet detection efficiencies for each individual system. Our main results are as follows. (1) Single (resp. multiple) planetary systems are mostly found in close (wide) binaries with separation a B < (>) ∼ 100–300 au. (2) In binaries, single and multiple-planet systems are similar in 1D distributions of mass and period as well as eccentricity (in contrast to the “eccentricity dichotomy” found in single star systems) but different in the 2D period-mass diagram. Specifically, there is a rectangular-shaped gap in the period-mass diagram of single-planet systems but not for multiples. This gap also depends on binary separation and is more prominent in close binaries. (3) There is a rising upper envelope in the period-mass diagram for planets in wide binaries as well as in single stars but not in close binaries. More specifically, there is a population of massive short-period planets in close binaries but almost absent in wide binaries or single stars. We suggest that enhanced planetary migration, collision and/or ejection in close binaries could be the potential underlying explanation for these three features.


2021 ◽  
Vol 922 (1) ◽  
pp. 16
Author(s):  
Hiroshi Kobayashi ◽  
Hidekazu Tanaka

Abstract Gas-giant planets, such as Jupiter, Saturn, and massive exoplanets, were formed via the gas accretion onto the solid cores, each with a mass of roughly 10 Earth masses. However, rapid radial migration due to disk–planet interaction prevents the formation of such massive cores via planetesimal accretion. Comparably rapid core growth via pebble accretion requires very massive protoplanetary disks because most pebbles fall into the central star. Although planetesimal formation, planetary migration, and gas-giant core formation have been studied with a lot of effort, the full evolution path from dust to planets is still uncertain. Here we report the result of full simulations for collisional evolution from dust to planets in a whole disk. Dust growth with realistic porosity allows the formation of icy planetesimals in the inner disk (≲10 au), while pebbles formed in the outer disk drift to the inner disk and there grow to planetesimals. The growth of those pebbles to planetesimals suppresses their radial drift and supplies small planetesimals sustainably in the vicinity of cores. This enables rapid formation of sufficiently massive planetary cores within 0.2–0.4 million years, prior to the planetary migration. Our models shows the first gas giants form at 2–7 au in rather common protoplanetary disks, in agreement with the exoplanet and solar systems.


2021 ◽  
Author(s):  
John C. B. Papaloizou
Keyword(s):  

Author(s):  
Frédéric S. Masset

Planet migration is the variation over time of a planet’s semimajor axis, leading to either a contraction or an expansion of the orbit. It results from the exchange of energy and angular momentum between the planet and the disk in which it is embedded during its formation and can cause the semimajor axis to change by as much as two orders of magnitude over the disk’s lifetime. The migration of forming protoplanets is an unavoidable process, and it is thought to be a key ingredient for understanding the variety of extrasolar planetary systems. Although migration occurs for protoplanets of all masses, its properties for low-mass planets (those having up to a few Earth masses) differ significantly from those for high-mass planets. The torque that is exerted by the disk on the planet is composed of different contributions. While migration was first thought to be invariably inward, physical processes that are able to halt or even reverse migration were later uncovered, leading to the realization that the migration path of a forming planet has a very sensitive dependence on the underlying disk parameters. There are other processes that go beyond the case of a single planet experiencing smooth migration under the disk’s tide. This is the case of planetary migration in low-viscosity disks, a fashionable research avenue because protoplanetary disks are thought to have very low viscosity, if any, over most of their planet-forming regions. Such a process is generally significantly chaotic and has to be tackled through high-resolution numerical simulations. The migration of several low-mass planets is also is a very fashionable topic, owing to the discovery by the Kepler mission of many multiple extrasolar planetary systems. The orbital properties of these systems suggest that at least some of them have experienced substantial migration. Although there have been many studies to account for the orbital properties of these systems, there is as yet no clear picture of the different processes that shaped them. Finally, some recently unveiled processes could be important for the migration of low-mass planets. One process is aero-resonant migration, in which a swarm of planetesimals subjected to aerodynamic drag push a planet inward when they reach a mean-motion resonance with the planet, while another process is based on so-called thermal torques, which arise when thermal diffusion in the disk is taken into account, or when the planet, heated by accretion, releases heat into the ambient gas.


Author(s):  
A Derdzinski ◽  
D D’Orazio ◽  
P Duffell ◽  
Z Haiman ◽  
A MacFadyen

Abstract Among the potential milliHz gravitational wave (GW) sources for the upcoming space-based interferometer LISA are extreme- or intermediate-mass ratio inspirals (EMRI/IMRIs). These events involve the coalescence of supermassive black holes in the mass range 105M⊙ ≲ M ≲ 107M⊙ with companion BHs of much lower masses. A subset of E/IMRIs are expected to occur in the accretion discs of active galactic nuclei (AGN), where torques exerted by the disc can interfere with the inspiral and cause a phase shift in the GW waveform. Here we use a suite of two-dimensional hydrodynamical simulations with the moving-mesh code DISCO to present a systematic study of disc torques. We measure torques on an inspiraling BH and compute the corresponding waveform deviations as a function of the binary mass ratio q ≡ M2/M1, the disc viscosity (α), and gas temperature (or equivalently Mach number; $\mathcal {M}$). We find that the absolute value of the gas torques is within an order of magnitude of previously determined planetary migration torques, but their precise value and sign depends non-trivially on the combination of these parameters. The gas imprint is detectable by LISA for binaries embedded in AGN discs with surface densities above $\Sigma _0\ge 10^{4-6} \rm \, g cm^{-2}$, depending on q, α and $\mathcal {M}$. Deviations are most pronounced in discs with higher viscosities, and for E/IMRIs detected at frequencies where LISA is most sensitive. Torques in colder discs exhibit a noticeable dependence on the GW-driven inspiral rate as well as strong fluctuations at late stages of the inspiral. Our results further suggest that LISA may be able to place constraints on AGN disc parameters and the physics of disc-satellite interaction.


2020 ◽  
Vol 499 (3) ◽  
pp. 4195-4205
Author(s):  
Alessandro A Trani ◽  
Adrian S Hamers ◽  
Aaron Geller ◽  
Mario Spera

ABSTRACT All the giant planets in the Solar system host a large number of natural satellites. Moons in extrasolar systems are difficult to detect, but a Neptune-sized exomoon candidate has been recently found around a Jupiter-sized planet in the Kepler-1625b system. Due to their relative ease of detection, hot Jupiters (HJs), which reside in close orbits around their host stars with a period of a few days, may be very good candidates to search for exomoons. It is still unknown whether the HJ population can host (or may have hosted) exomoons. One suggested formation channel for HJs is high-eccentricity migration induced by a stellar binary companion combined with tidal dissipation. Here, we investigate under which circumstances an exomoon can prevent or allow high-eccentricity migration of a HJ, and in the latter case, if the exomoon can survive the migration process. We use both semi-analytic arguments, as well as direct N-body simulations including tidal interactions. Our results show that massive exomoons are efficient at preventing high-eccentricity migration. If an exomoon does instead allow for planetary migration, it is unlikely that the HJ formed can host exomoons since the moon will either spiral on to the planet or escape from it during the migration process. A few escaped exomoons can become stable planets after the Jupiter has migrated, or by tidally migrating themselves. The majority of the exomoons end up being ejected from the system or colliding with the primary star and the host planet. Such collisions might none the less leave observable features, such as a debris disc around the primary star or exorings around the close-in giant.


2020 ◽  
Author(s):  
Richard Smith ◽  
Wesley Fraser ◽  
Alan Fitzsimmons

&lt;p&gt;Binary Transneptunian Objects (TNOs) have remained virtually unaltered since the formation of the solar system. They can therefore provide valuable insights into the history and properties of objects from the outer solar system, such as object compositions and dynamical history, including the effects of planetary migration on primordial planetesimal populations. Benecchi et al. 2009 measured the colours of 23 TNO binaries using the Hubble Space Telescope (HST), reporting a strong correlation between primary-secondary F606W-F814W colours. Marsset et al. 2020 extended this work into the NIR, adding a further three TNO binary objects with accurate colour measurements made using the Gemini-North telescope which indicated a similar colour correlation in the infrared.&lt;/p&gt;&lt;p&gt;&amp;#160;&amp;#160; We aim to increase the number of binary TNOs with accurate NIR colour measurements by reprocessing data available in the HST archive using a consistent MCMC-based point spread function (PSF)-fitting algorithm. We explore both the position and brightness parameter space for the binary components. Tiny Tim (Krist et al., 2011) PSFs are generated for each component and planted in a model image that is compared with the HST archive image to identify best-fit PSF parameter values. These values are then used to produce and subtract a final model image, providing accurate likelihood estimates for the in-image position and photometric brightness of each component.&lt;/p&gt;&lt;p&gt;&amp;#160;&amp;#160; We will present the results of applying the algorithm to archival data of 24 known binaries, including both optical and NIR colour measurements of both binary components. We will also provide a measure of our sensitivity to binary component separations and brightness ratios. Our results will be compared to the correlated colours observed by Benecchi et al. (2009) and Marsset et al. (2020).&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;References:&lt;/p&gt;&lt;p&gt;S. D. Benecchi, K. S. Noll, W. M. Grundy, M. W. Buie, D. C. Stephens, andH. F. Levison. The correlated colors of transneptunian binaries. Icarus, 200(1):292&amp;#8211;303, Mar 2009. doi: 10.1016/j.icarus.2008.10.025.&lt;/p&gt;&lt;p&gt;J Krist, R Hook, and F Stoehr. 20 years of hubble space telescope opticalmodeling using tiny tim, 2011. URLhttps://doi.org/10.1117/12.892762.&lt;/p&gt;&lt;p&gt;Micha &amp;#776;el Marsset, Wesley C. Fraser, Michele T. Bannister, Megan E. Schwamb, Rosemary E. Pike, Susan Benecchi, J. J. Kavelaars, Mike Alexandersen, Ying-Tung Chen, Brett J. Gladman, Stephen D. J. Gwyn, Jean-Marc Petit, and Kathryn Volk. Col-OSSOS: Compositional Homogeneity of Three KuiperBelt Binaries.The Planetary Science Journal, 1(1):16, June 2020. doi:10.3847/PSJ/ab8cc0.&lt;/p&gt;


2020 ◽  
Vol 499 (3) ◽  
pp. 3630-3649
Author(s):  
Timothy R Holt ◽  
David Vokrouhlický ◽  
David Nesvorný ◽  
Miroslav Brož ◽  
Jonathan Horner

ABSTRACT Asteroid pairs, two objects that are not gravitationally bound to one another, but share a common origin, have been discovered in the Main belt and Hungaria populations. Such pairs are of major interest, as the study of their evolution under a variety of dynamical influences can indicate the time since the pair was created. To date, no asteroid pairs have been found in the Jovian Trojans, despite the presence of several binaries and collisional families in the population. The search for pairs in the Jovian Trojan population is of particular interest, given the importance of the Trojans as tracers of planetary migration during the Solar system’s youth. Here we report a discovery of the first pair, (258656) 2002 ES76 and 2013 CC41, in the Jovian Trojans. The two objects are approximately the same size and are located very close to the L4 Lagrange point. Using numerical integrations, we find that the pair is at least 360 Myr old, though its age could be as high as several Gyrs. The existence of the (258656) 2002 ES76–2013 CC41 pair implies there could be many such pairs scattered through the Trojan population. Our preferred formation mechanism for the newly discovered pair is through the dissociation of an ancient binary system, triggered by a sub-catastrophic impact, but we can not rule out rotation fission of a single object driven by YORP torques. A by-product of our work is an up-to-date catalogue of Jovian Trojan proper elements, which we have made available for further studies.


2020 ◽  
Vol 497 (4) ◽  
pp. 5540-5549
Author(s):  
Zs Regály

ABSTRACT The solid material of protoplanetary discs forms an asymmetric pattern around a low-mass planet ($M_\mathrm{p}\le 10\, \mathrm{ M}_\oplus$) due to the combined effect of dust–gas interaction and the gravitational attraction of the planet. Recently, it has been shown that although the total solid mass is negligible compared to that of gas in protoplanetary discs, a positive torque can be emerged by a certain size solid species. The torque magnitude can overcome that of gas which may result in outward planetary migration. In this study, we show that the accretion of solid species by the planet strengthens the magnitude of solid torque being either positive or negative. We run two-dimensional, high-resolution ($1.5\,\rm {K}\times 3\,\rm {K}$) global hydrodynamic simulations of an embedded low-mass planet in a protoplanetary disc. The solid material is handled as a pressureless fluid. Strong accretion of well-coupled solid species by an $M_\mathrm{p}\lesssim 0.3\, \mathrm{ M}_\oplus$ protoplanet results in the formation of such a strongly asymmetric solid pattern close to the planet that the positive solid torque can overcome that of gas by two times. However, the accretion of solids in the pebble regime results in increased magnitude negative torque felt by protoplanets and strengthened positive torque for Earth-mass planets. For $M_\mathrm{p}\ge 3\, \mathrm{ M}_\oplus$ planets, the magnitude of the solid torque is positive, however, independent of the accretion strength investigated. We conclude that the migration of solid accreting planets can be substantially departed from the canonical type-I prediction.


Sign in / Sign up

Export Citation Format

Share Document