scholarly journals Atmospheric composition and structure of HD209458b

2008 ◽  
Vol 4 (S253) ◽  
pp. 524-527
Author(s):  
J.-M. Désert ◽  
A. Vidal-Madjar ◽  
A. Lecavelier des Etangs ◽  
D. Sing ◽  
D. Ehrenreich ◽  
...  

AbstractTransiting planets like HD209458b offer a unique opportunity to scrutinize their atmospheric composition and structure. Transit spectroscopy probes the transition region between the day and night sides, called the limb. We present a re-analysis of existing HST/STIS transmission spectra of HD209458b's atmosphere. From these observations we identify H2 Rayleigh scattering, derive the absolute Sodium abundance and quantify its depletion in the upper atmosphere, extract a stratospheric T-P profile and find a temperature inversion and explain broad band absorptions with the presence of TiO and VO molecules.

2000 ◽  
Vol 18 (12) ◽  
pp. 1651-1656
Author(s):  
J. Lilensten ◽  
P. O. Amblard

Abstract. We examine the oscillations of the meridional neutral wind in the F region as seen by the EISCAT radar. We propose an interpretation in term of eddies (tourbillons) of typical size of a few tens to a few hundreds of kilometers. The observed rotation velocity is a few hundreds of meters per second. We suggest that the tourbillons are a common feature of thermospheric movements. We propose an optical experiment to check the validity of this assumption.Key words: Atmospheric composition and structure (thermosphere · composition and chemistry) · Ionosphere (ionosphere · atmosphere interactions)


2008 ◽  
Vol 4 (S253) ◽  
pp. 239-245
Author(s):  
Ivan Hubeny ◽  
Adam Burrows

AbstractWe show that a consistent fit to observed secondary eclipse data for several strongly irradiated transiting planets demands a temperature inversion (stratosphere) at altitude. Such a thermal inversion significantly influences the planet/star contrast ratios at the secondary eclipse, their wavelength dependences, and, importantly, the day-night flux contrast during a planetary orbit. The presence of the thermal inversion/stratosphere seems to roughly correlate with the stellar flux at the planet. Such temperature inversions might be caused by an upper-atmosphere absorber whose exact nature is still uncertain.


2005 ◽  
Vol 23 (5) ◽  
pp. 1959-1961
Author(s):  

Abstract. In this short contribution the use of different sunspot numbers for the estimation of past solar and upper atmosphere conditions from historical and modern auroral observations realised by Schröder et al. (2004) is analysed. Moreover, some comments are made on the relationships between mean annual visual observations of the auroras at middle latitudes of Europe and the mean annual sunspot number during 1780–1829. Keywords. Atmospheric composition and structure (Airglow and aurora) – Magnetospheric physics (Auroral phenomena, solar wind-magnetosphere interactions) – History of geophysics (Solar-planetary relationship)


2020 ◽  
Author(s):  
Graeme Marlton ◽  
Andrew Charlton-Perez ◽  
Giles Harrison ◽  
Inna Polichtchouk ◽  
Alain Hauchecorne ◽  
...  

Abstract. To advance our understanding of the stratosphere, high quality observational datasets of the upper atmosphere are needed. It is commonplace that reanalysis is used to conduct stratospheric studies. However the accuracy of the standard reanalysis at these heights is hard to infer due to a lack of in-situ measurements. Satellite measurements provide one source of temperature information. As some satellite information is already assimilated into reanalyses, the direct comparison of satellite temperatures to the reanalysis is not truly independent. Stratospheric lidars use Rayleigh scattering to measure density in the upper atmosphere, allowing temperature profiles to be derived for altitudes from 30 km (where Mie scattering due to stratospheric aerosols becomes negligible) to 80–90 km (where the signal-to-noise begins to drop rapidly). The Network for the Detection of Atmospheric Composition Change (NDACC) contains several lidars at different latitudes that have measured atmospheric temperatures since the 1970s, resulting in a long running upper-stratospheric temperature dataset. These temperature datasets are useful for validating reanalysis datasets in the stratosphere, as they are not assimilated into reanalyses. Here we take stratospheric temperature data from lidars in the northern hemisphere for winter months between 1990–2017 and compare them with the European Centre for ECMWF's ERA-interim and ERA-5 reanalyses. To give confidence in any bias found, temperature data from NASA's EOS Microwave Limb Sounder is also compared to ERA-interim and ERA-5 at points over the lidar sites. In ERA-interim a cold bias of −3 to −4 K between 10 hPa and 1 hPa is found when compared to both measurement systems. Comparisons with ERA-5 found a small bias of magnitude 1 K which varies between cold and warm bias with height between 10 hPa and 3 hPa, indicating a good thermal representation of the upper atmosphere to 3 hPa. At heights above this, comparisons with EOS MLS yield a slight warm bias and the temperature lidar yield a cold bias. A further comparison is undertaken to see the effects of the assimilation of the Advanced Microwave Sounding Unit-A satellite data and the Constellation Observing System for Meteorology, Ionosphere, and Climate GPS Radio Occulation (COSMIC GPSRO) data on stratospheric temperatures. By comparing periods before and after the introduction of each data source it is clear that COSMIC GPSRO improves the cold bias in the 3 hPa to 0.5 hPa altitude range.


2020 ◽  
Author(s):  
Graeme Marlton ◽  
Andrew Charlton-Perez ◽  
Giles Harrison ◽  
Inna Polichtchouk ◽  
Alain Hauchecorne ◽  
...  

Abstract. To advance our understanding of the stratosphere, high quality observational datasets of the upper atmosphere are needed. It is commonplace that reanalysis is used to conduct stratospheric studies. However the accuracy of the standard reanalysis at these heights is hard to infer due to a lack of in-situ measurements. Satellite measurements provide one source of temperature information. As some satellite information is already assimilated into reanalyses, the direct comparison of satellite temperatures to the reanalysis is not truly independent. Stratospheric lidars use Rayleigh scattering to measure density in the upper atmosphere, allowing temperature profiles to be derived for altitudes from 30 km (where Mie scattering due to stratospheric aerosols becomes negligible) to 80–90 km (where the signal-to-noise begins to drop rapidly). The Network for the Detection of Atmospheric Composition Change (NDACC) contains several lidars at different latitudes that have measured atmospheric temperatures since the 1970s, resulting in a long running upper-stratospheric temperature dataset. These temper1ature datasets are useful for validating reanalysis datasets in the stratosphere, as they are not assimilated into reanalyses. Here we take stratospheric temperature data from lidars in the northern hemisphere for winter months between 1990–2017 and compare them with the European Centre for ECMWF's ERA-interim and ERA-5 reanalyses. To give confidence in any bias found, temperature data from NASA's EOS Microwave Limb Sounder is also compared to ERA-interim and ERA-5 at points over the lidar sites. In ERA-interim a cold bias of −3 to −4 K between 10 hPa and 1 hPa is found when compared to both measurement 15 systems. Comparisons with ERA-5 found a small bias of magnitude 1 K which varies between cold and warm bias with height between 10 hPa and 3 hPa, indicating a good thermal representation of the upper atmosphere to 3 hPa. At heights above this, comparisons with EOS MLS yield a slight warm bias and the temperature lidar yield a cold bias. A further comparison is undertaken to see the effects of the assimilation of the Advanced Microwave Sounding Unit-A satellite data and the Constellation Observing System for Meteorology, Ionosphere, and Climate GPS Radio Occulation (COSMIC GPSRO) data on stratospheric temperatures. By comparing periods before and after the introduction of each data source it is clear that COSMIC GPSRO improves the cold bias in the 3 hPa to 0.5 hPa altitude range.


1999 ◽  
Vol 47 (10-11) ◽  
pp. 1225-1242 ◽  
Author(s):  
Th. Encrenaz ◽  
P. Drossart ◽  
H. Feuchtgruber ◽  
E. Lellouch ◽  
B. Bézard ◽  
...  

2000 ◽  
Vol 18 (10) ◽  
pp. 1293-1303 ◽  
Author(s):  
W. J. R. French ◽  
G. B. Burns ◽  
K. Finlayson ◽  
P. A. Greet ◽  
R. P. Lowe ◽  
...  

Abstract. OH(6–2) Q1/P1 and R1/P1 airglow emission intensity ratios, for rotational states up to j' = 4.5, are measured to be lower than implied by transition probabilities published by various authors including Mies, Langhoff et al. and Turnbull and Lowe. Experimentally determined relative values of j' transitions yield OH(6–2) rotational temperatures 2 K lower than Langhoff et al., 7 K lower than Mies and 13 K lower than Turnbull and Lowe.Key words: Atmospheric composition and structure (airglow and aurora; pressure, density and temperature)


2002 ◽  
Vol 20 (6) ◽  
pp. 871-874 ◽  
Author(s):  
K.-Y. Wang ◽  
D. E. Shallcross ◽  
J. A. Pyle

Abstract. Based on the tracking of the movement of the tropopause over the whole year, the extent/depth of stratosphere-troposphere exchange (STE) events and their seasonal variations is investigated. It is found that a stratospheric signature can be observed at pressures as high as 400 hPa in a hemisphere during its winter to spring period, while a tropospheric signature can be observed at pressures as low as 190 hPa during the hemispheric summer to autumn months. The major implication for such a pronounced vertical movement is that the downward penetration of air from the stratosphere is likely to deposit elevated levels of O3 into the upper troposphere. Though the analysis at 250 hPa reveals that the values of the stratosphere-troposphere index are similar all year round, a result which is consistent with other studies, it is found that an intrusion from the stratosphere to the troposphere is more likely to occur during the hemispheric winter to spring period than other seasons.Key words. Atmospheric composition and structure (pressure, density, and temperature; troposphere–composition and chemistry)


1993 ◽  
Vol 260 (3) ◽  
pp. 631-634 ◽  
Author(s):  
M. A. Barstow ◽  
T. A. Fleming ◽  
D. S. Finley ◽  
D. Koester ◽  
C. J. Diamond

Sign in / Sign up

Export Citation Format

Share Document