cold bias
Recently Published Documents


TOTAL DOCUMENTS

179
(FIVE YEARS 61)

H-INDEX

31
(FIVE YEARS 4)

Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1414
Author(s):  
Adrian F. Tuck

The increase of the vertical scaling exponent of the horizontal wind Hv(s) with altitude from the surface of the Pacific Ocean to 13 km altitude, as observed by GPS dropsondes, is investigated. An explanation is offered in terms of the decrease of gravitational force and decrease of quenching efficiency of excited photofragments from ozone photodissociation with increasing altitude (decreasing pressure). Turbulent scaling is examined in both the vertical from dropsondes and horizontal from aircraft observations; the scaling exponents H for both wind speed and temperature in both coordinates are positively correlated with traditional measures of jet stream strength. Interpretation of the results indicates that persistence of molecular velocity after collision induces symmetry breaking emergence of hydrodynamic flow via the mechanism first modelled by Alder and Wainwright, enabled by the Gibbs free energy carried by the highest speed molecules. It is suggested that the combined effects have the potential to address the cold bias in numerical models of the global atmosphere.


2021 ◽  
Vol 18 (20) ◽  
pp. 5767-5787
Author(s):  
Alexandra Pongracz ◽  
David Wårlind ◽  
Paul A. Miller ◽  
Frans-Jan W. Parmentier

Abstract. The Arctic is warming rapidly, especially in winter, which is causing large-scale reductions in snow cover. Snow is one of the main controls on soil thermodynamics, and changes in its thickness and extent affect both permafrost thaw and soil biogeochemistry. Since soil respiration during the cold season potentially offsets carbon uptake during the growing season, it is essential to achieve a realistic simulation of the effect of snow cover on soil conditions to more accurately project the direction of arctic carbon–climate feedbacks under continued winter warming. The Lund–Potsdam–Jena General Ecosystem Simulator (LPJ-GUESS) dynamic vegetation model has used – up until now – a single layer snow scheme, which underestimated the insulation effect of snow, leading to a cold bias in soil temperature. To address this shortcoming, we developed and integrated a dynamic, multi-layer snow scheme in LPJ-GUESS. The new snow scheme performs well in simulating the insulation of snow at hundreds of locations across Russia compared to observations. We show that improving this single physical factor enhanced simulations of permafrost extent compared to an advanced permafrost product, where the overestimation of permafrost cover decreased from 10 % to 5 % using the new snow scheme. Besides soil thermodynamics, the new snow scheme resulted in a doubled winter respiration and an overall higher vegetation carbon content. This study highlights the importance of a correct representation of snow in ecosystem models to project biogeochemical processes that govern climate feedbacks. The new dynamic snow scheme is an essential improvement in the simulation of cold season processes, which reduces the uncertainty of model projections. These developments contribute to a more realistic simulation of arctic carbon–climate feedbacks.


2021 ◽  
Author(s):  
Victoria R. Dutch ◽  
Nick Rutter ◽  
Leanne Wake ◽  
Melody Sandells ◽  
Chris Derksen ◽  
...  

Abstract. Snowpack microstructure controls the transfer of heat to, and the temperature of, the underlying soils. In situ measurements of snow and soil properties from four field campaigns during two different winters (March and November 2018, January and March 2019) were compared to an ensemble of CLM5.0 (Community Land Model) simulations, at Trail Valley Creek, Northwest Territories, Canada. Snow MicroPenetrometer profiles allowed snowpack density and thermal conductivity to be derived at higher vertical resolution (1.25 mm) and a larger sample size (n = 1050) compared to traditional snowpit observations (3 cm vertical resolution; n = 115). Comparing measurements with simulations shows CLM overestimated snow thermal conductivity by a factor of 3, leading to a cold bias in wintertime soil temperatures (RMSE = 5.8 °C). Bias-correction of the simulated thermal conductivity (relative to field measurements) improved simulated soil temperatures (RMSE = 2.1 °C). Multiple linear regression shows the required correction factor is strongly related to snow depth (R2 = 0.77, RMSE = 0.066) particularly early in the winter. Furthermore, CLM simulations did not adequately represent the observed high proportions of depth hoar. Addressing uncertainty in simulated snow properties and the corresponding heat flux is important, as wintertime soil temperatures act as a control on subnivean soil respiration, and hence impact Arctic winter carbon fluxes and budgets.


2021 ◽  
Author(s):  
Ingalise Kindstedt ◽  
Kristin Schild ◽  
Dominic Winski ◽  
Karl Kreutz ◽  
Luke Copland ◽  
...  

Abstract. Remote sensing data are a crucial tool for monitoring climatological changes and glacier response in areas inaccessible for in situ measurements. The Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) product provides temperature data for remote glaciated areas where weather stations are sparse or absent, such as the St. Elias Mountains (Yukon, Canada). However, MODIS LSTs in the St. Elias Mountains have shown a cold bias relative to available weather station measurements, the source of which is unknown. Here, we show that the MODIS cold bias likely results from the occurrence of near-surface temperature inversions rather than from the MODIS sensor’s large footprint size or from poorly constrained snow emissivity values used in LST calculations. We find that a cold bias in remote sensing temperatures is present not only in MODIS LST products, but also in Advanced Spaceborne Thermal Emissions Radiometer (ASTER) and Landsat surface temperature products, both of which have a much smaller footprint (90–120 m) than MODIS (1 km). In all three datasets, the cold bias was most pronounced in the winter (mean cold bias > 8 °C), and least pronounced in the spring and summer (mean cold bias < 2 °C). We also find this enhanced seasonal bias in MODIS brightness temperatures, before the incorporation of snow surface emissivity into the LST calculation. Finally, we find the MODIS cold bias to be consistent in magnitude and seasonal distribution with modeled temperature inversions, and to be most pronounced under conditions that facilitate near-surface inversions, namely low incoming solar radiation and wind speeds, at study sites Icefield Divide (60.68° N, 139.78° W, 2,603 m a.s.l) and Eclipse Icefield (60.84° N, 139.84° W, 3,017 m a.s.l.). These results demonstrate that efforts to improve the accuracy of MODIS LSTs should focus on understanding near-surface physical processes rather than refining the MODIS sensor or LST algorithm. In the absence of a physical correction for the cold bias, we apply a statistical correction, enabling the use of mean annual MODIS LSTs to qualitatively and quantitatively examine temperatures in the St. Elias Mountains and their relationship to melt and mass balance.


2021 ◽  
Vol 48 (18) ◽  
Author(s):  
Jie Feng ◽  
Tao Lian ◽  
Dake Chen ◽  
Yanjie Li

2021 ◽  
Author(s):  
Simon O. Tucker ◽  
Elizabeth J. Kendon ◽  
Nicolas Bellouin ◽  
Erasmo Buonomo ◽  
Ben Johnson ◽  
...  

AbstractWe evaluate a 12-member perturbed parameter ensemble of regional climate simulations over Europe at 12 km resolution, carried out as part of the UK Climate Projections (UKCP) project. This ensemble is formed by varying uncertain parameters within the model physics, allowing uncertainty in future projections due to climate modelling uncertainty to be explored in a systematic way. We focus on present day performance both compared to observations, and consistency with the driving global ensemble. Daily and seasonal temperature and precipitation are evaluated as two variables commonly used in impacts assessments. For precipitation we find that downscaling, even whilst within the convection-parameterised regime, generally improves daily precipitation, but not everywhere. In summer, the underestimation of dry day frequency is worse in the regional ensemble than in the driving simulations. For temperature we find that the regional ensemble inherits a large wintertime cold bias from the global model, however downscaling reduces this bias. The largest bias reduction is in daily winter cold temperature extremes. In summer the regional ensemble is cooler and wetter than the driving global models, and we examine cloud and radiation diagnostics to understand the causes of the differences. We also use a low-resolution regional simulation to determine whether the differences are a consequence of resolution, or due to other configuration differences, with the predominant configuration difference being the treatment of aerosols. We find that use of the EasyAerosol scheme in the regional model, which aims to approximate the aerosol effects in the driving model, causes reduced temperatures by around 0.5 K over Eastern Europe in Summer, and warming of a similar magnitude over France and Germany in Winter, relative to the impact of interactive aerosol in the global runs. Precipitation is also increased in these regions. Overall, we find that the regional model is consistent with the global model, but with a typically better representation of daily extremes and consequently we have higher confidence in its projections of their future change.


2021 ◽  
Author(s):  
Jiheun Lee ◽  
Sarah M. Kang ◽  
Hanjun Kim ◽  
Baoqiang Xiang

Abstract This study investigates the causes of the double intertropical convergence zone (ITCZ) bias by disentangling the individual contribution of regional sea surface temperature (SST) biases. We show that a previously suggested Southern Ocean warm bias effect in displacing the zonal-mean ITCZ southward is diminished by the southern midlatitude cold bias effect. The northern extratropical cold bias turns out to be most responsible for a southward-displaced zonal-mean precipitation, but the zonal-mean diagnostics poorly represent the spatial pattern of the tropical Pacific response. Examination of longitude-latitude structure indicates that the overall spatial pattern of tropical precipitation bias is largely shaped by the local SST bias. The southeastern tropical Pacific wet bias is driven by warm bias along the west coast of South America with negligible influence from the Southern Ocean warm bias. While our model experiments are idealized with ocean dynamics being absent, the results shed light on where preferential foci should be applied in model development to improve the certain features of tropical precipitation bias.


Author(s):  
Michael Notaro ◽  
Yafang Zhong ◽  
Pengfei Xue ◽  
Christa Peters-Lidard ◽  
Carlos Cruz ◽  
...  

AbstractAs Earth’s largest collection of fresh water, the Laurentian Great Lakes have enormous ecological and socio-economic value. Their basin has become a regional hotspot of climatic and limnological change, potentially threatening its vital natural resources. Consequentially, there is a need to assess the current state of climate models regarding their performance across the Great Lakes region and develop the next generation of high-resolution regional climate models to address complex limnological processes and lake-atmosphere interactions. In response to this need, the current paper focuses on the generation and analysis of a 20-member ensemble of 3-km National Aeronautics and Space Administration (NASA)-Unified Weather Research and Forecasting (NU-WRF) simulations for the 2014-2015 cold season. The study aims to identify the model’s strengths and weaknesses; optimal configuration for the region; and the impacts of different physics parameterizations, coupling to a 1D lake model, time-variant lake-surface temperatures, and spectral nudging. Several key biases are identified in the cold-season simulations for the Great Lakes region, including an atmospheric cold bias that is amplified by coupling to a 1D lake model but diminished by applying the Community Atmosphere Model radiation scheme and Morrison microphysics scheme; an excess precipitation bias; anomalously early initiation of fall lake turnover and subsequent cold lake bias; excessive and overly persistent lake ice cover; and insufficient evaporation over Lakes Superior and Huron. The research team is currently addressing these key limitations by coupling NU-WRF to a 3D lake model in support of the next generation of regional climate models for the critical Great Lakes Basin.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 865
Author(s):  
Li-Huan Hsu ◽  
Dan-Rong Chen ◽  
Chou-Chun Chiang ◽  
Jung-Lien Chu ◽  
Yi-Chiang Yu ◽  
...  

The Model for Prediction Across Scales (MPAS) is used to simulate the East Asian winter monsoon (EAWM) over the 2011–2020 winter. The 45 day hindcasts are made with 30 km horizontal resolution and constructed to a time-lagged ensemble system. The climatology, the major modes of EAWM variability, and the blocking activities are examined. The evaluation results reveal that MPAS can simulate the climatologic characteristics of EAWM reasonably, with a surface cold bias of 4% and a positive rainfall bias of 9% over East Asia. MPAS can perform skillfully in the forecasts of surface temperature probability of East Asia and is more reliable in detecting below normal and above normal events. The features that influence the EAWM variability are also analyzed. MPAS simulates reasonably in the occurrence frequency of blocking high in both locations and duration time. The empirical orthogonal function analysis also shows that MPAS can capture the two major modes of the surface temperature of EAWM. On the other hand, it is also found that a biased sea surface temperature may modify the circulations over the Western Pacific and affect the simulated occurrence frequency of cold events near Taiwan during winter.


2021 ◽  
Author(s):  
Mika Rantanen ◽  
Matti Kämäräinen ◽  
Otto Hyvärinen ◽  
Andrea Vajda

&lt;p&gt;Sub-seasonal to seasonal scale forecasts provide useful information for city authorities for operational planning, preparedness and maintenance costs optimization. In the EU H2020 E-SHAPE project the Finnish Meteorological Institute aims at developing an operational service providing user-oriented sub-seasonal and seasonal forecast products for the City of Helsinki tailored for winter maintenance activities. To be able to provide skilful sub-seasonal to seasonal forecasts products, bias adjustment and evaluation of the used weather parameters, i.e. temperature and snow is crucial.&amp;#160;&lt;/p&gt;&lt;p&gt;In this study, we focus on the skill assessment of sub-seasonal temperature forecasts in Helsinki, Finland, experimenting with various methods to adjust the bias from the raw temperature forecasts. Due to its coastal location, skilful forecasting of temperatures for Helsinki is challenging. The temperature gradient on the coastline is especially strong during spring when inland areas warm considerably faster than the coastline. Therefore, raw point forecasts for Helsinki suffer from cold bias during the March-July period.&lt;/p&gt;&lt;p&gt;We use the 2 m temperature extended-range reforecasts obtained from the ECMWF S2S database and apply two bias adjustment techniques: removing the mean bias and the quantile mapping method. Reforecasts for a 20-years period, 2000-2019 with 10 ensemble members, run twice a week for 46 days ahead were calibrated and evaluated. Two datasets are used as reference, observations from Helsinki Kaisaniemi weather station and gridded ERA5 reanalysis data. Thus, these combinations yield in total five sets of forecasts which are evaluated against the observations.&lt;/p&gt;&lt;p&gt;The results of the experiments and the potential added value of bias correction will be presented for discussion. Based on the preliminary results, especially the cold bias in spring and early summer can be improved with the bias-correction methods. The bias-adjusted extended-range temperature forecasts are used in the development of sub-seasonal winter forecast products tailored for the needs of city maintenance.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document