scholarly journals The global positioning system, relativity, and extraterrestrial navigation

2009 ◽  
Vol 5 (S261) ◽  
pp. 22-30 ◽  
Author(s):  
Neil Ashby ◽  
Robert A. Nelson

AbstractRelativistic effects play an important role in the performance of the Global Positioning System (GPS) and in world-wide time comparisons. The GPS has provided a model for algorithms that take relativistic effects into account. In the future exploration of space, analogous considerations will be necessary for the dissemination of time and for navigation. We discuss relativistic effects that are important for a navigation system such as at Mars. We describe relativistic principles and effects that are essential for navigation systems, and apply them to navigation satellites carrying atomic clocks in orbit about Mars, and time transfer between Mars and Earth. It is shown that, as in the GPS, relativistic effects are not negligible.

1982 ◽  
Vol 36 (1) ◽  
pp. 9-28 ◽  
Author(s):  
David E. Wells ◽  
Demitris Delikaraoglou ◽  
Petr Vaníč

The principles of operation of the NAVSTAR/GPS system are described within the context of the more familiar shore-based radionavigation systems, and of the Transit satellite navigation system. The present GPS satellite constellation of up to six prototype satellites, and the eventual constellation of up to 18 operational satellites are described. Some details of GPS signal structure, receiver operation, and error models are given. Results of our simulations of 1980 GPS marine navigation performance off eastern Canada are presented. These indicate GPS is presently capable of providing 150 m or better real-time positioning for about 11 hours a day in this region. GPS performance in the future is discussed.


Author(s):  
Vitalii Savchenko ◽  
Volodymyr Tolubko ◽  
Liubov Berkman ◽  
Anatolii Syrotenko ◽  
Pavlo Shchypanskyi ◽  
...  

The article explores the problem of alternative navigation support for high-precision weapons that use guidance based on signals from global navigation systems. It proposes the use of an autonomous navigation system replacing satellite navigation in the case where major Global Positioning System-like systems are unavailable. It suggests the idea and the model of a moving navigation field that can move along the weapon trajectory. The model of accuracy for the pseudolite navigation system uses the least squares method as its basis. The study looks into the accuracy parameters of the moving navigation field. The results of the study show the advantages of a moving field when compared with a stationary navigation field in case of autonomous use. This research also shows the possibility of using an autonomous system for Special Forces, search and rescue operations, and robotic and unmanned aerial, ground, and sea-based vehicles.


Author(s):  
Prabha Ramasamy ◽  
Mohan Kabadi

Navigational service is one of the most essential dependency towards any transport system and at present, there are various revolutionary approaches that has contributed towards its improvement. This paper has reviewed the global positioning system (GPS) and computer vision based navigational system and found that there is a large gap between the actual demand of navigation and what currently exists. Therefore, the proposed study discusses about a novel framework of an autonomous navigation system that uses GPS as well as computer vision considering the case study of futuristic road traffic system. An analytical model is built up where the geo-referenced data from GPS is integrated with the signals captured from the visual sensors are considered to implement this concept. The simulated outcome of the study shows that proposed study offers enhanced accuracy as well as faster processing in contrast to existing approaches.


1977 ◽  
Vol 30 (1) ◽  
pp. 35-47 ◽  
Author(s):  
Edward M. Lassiter ◽  
Bradford Parkinson

The NAVSTAR Global Positioning System (GPS) is a satellite-based navigation system that will provide extremely accurate three-dimensional position fixes and timing information to properly equipped users anywhere on or near the Earth. The system will be available continuously regardless of weather conditions and will find extensive utilization in improved weapons delivery accuracies, range instrumentation, &c. Furthermore it will provide an ultimate saving in the number and cost of navigation and position-fixing systems currently employed or projected. It is a Joint Service programme managed by the U.S.A.F. with deputies from the Navy, Army and Marines and the Defense Mapping Agency. The system concept evolved from U.S.A.F. and Navy studies initiated in the mid-1960s. Current programme plans call for the deployment of six satellites in 1977 to permit demonstration and evaluation tests over the continental United States. The system will then be expanded through the deployment of additional satellites into an operational 24-satellite system.


Sign in / Sign up

Export Citation Format

Share Document