scholarly journals Oscillatory migratory large-scale fields in mean-field and direct simulations

2009 ◽  
Vol 5 (S264) ◽  
pp. 197-201
Author(s):  
Dhrubaditya Mitra ◽  
Reza Tavakol ◽  
Axel Brandenburg ◽  
Petri J. Käpylä

AbstractWe summarise recent results form direct numerical simulations of both non-rotating helically forced and rotating convection driven MHD equations in spherical wedge-shape domains. In the former, using perfect-conductor boundary conditions along the latitudinal boundaries we observe oscillations, polarity reversals and equatorward migration of the large-scale magnetic fields. In the latter we obtain angular velocity with cylindrical contours and large-scale magnetic field which shows oscillations, polarity reversals but poleward migration. The occurrence of these behviours in direct numerical simulations is clearly of interest. However the present models as they stand are not directly applicable to the solar dynamo problem. Nevertheless, they provide general insights into the operation of turbulent dynamos.

2010 ◽  
Vol 6 (S274) ◽  
pp. 62-71
Author(s):  
A. Lazarian ◽  
G. Kowal ◽  
E. de Gouveia Dal Pino ◽  
E. Vishniac

AbstractOur numerical simulations show that the reconnection of magnetic field becomes fast in the presence of weak turbulence in the way consistent with the Lazarian & Vishniac (1999) model of fast reconnection. This process in not only important for understanding of the origin and evolution of the large-scale magnetic field, but is seen as a possibly efficient particle accelerator producing cosmic rays through the first order Fermi process. In this work we study the properties of particle acceleration in the reconnection zones in our numerical simulations and show that the particles can be efficiently accelerated via the first order Fermi acceleration.


2019 ◽  
Vol 623 ◽  
pp. A113 ◽  
Author(s):  
Anvar Shukurov ◽  
Luiz Felippe S. Rodrigues ◽  
Paul J. Bushby ◽  
James Hollins ◽  
Jörg P. Rachen

Context. A convenient representation of the structure of the large-scale galactic magnetic field is required for the interpretation of polarization data in the sub-mm and radio ranges, in both the Milky Way and external galaxies. Aims. We develop a simple and flexible approach to construct parametrised models of the large-scale magnetic field of the Milky Way and other disc galaxies, based on physically justifiable models of magnetic field structure. The resulting models are designed to be optimised against available observational data. Methods. Representations for the large-scale magnetic fields in the flared disc and spherical halo of a disc galaxy were obtained in the form of series expansions whose coefficients can be calculated from observable or theoretically known galactic properties. The functional basis for the expansions is derived as eigenfunctions of the mean-field dynamo equation or of the vectorial magnetic diffusion equation. Results. The solutions presented are axially symmetric but the approach can be extended straightforwardly to non-axisymmetric cases. The magnetic fields are solenoidal by construction, can be helical, and are parametrised in terms of observable properties of the host object, such as the rotation curve and the shape of the gaseous disc. The magnetic field in the disc can have a prescribed number of field reversals at any specified radii. Both the disc and halo magnetic fields can separately have either dipolar or quadrupolar symmetry. The model is implemented as a publicly available software package GALMAG which allows, in particular, the computation of the synchrotron emission and Faraday rotation produced by the model’s magnetic field. Conclusions. The model can be used in interpretations of observations of magnetic fields in the Milky Way and other spiral galaxies, in particular as a prior in Bayesian analyses. It can also be used for a simple simulation of a time-dependent magnetic field generated by dynamo action.


2020 ◽  
Vol 86 (3) ◽  
Author(s):  
G. Rüdiger ◽  
M. Küker ◽  
P. J. Käpylä

Consequences of fluctuating microscopic conductivity in mean-field electrodynamics of turbulent fluids are formulated and discussed. If the conductivity fluctuations are assumed to be uncorrelated with the velocity fluctuations then only the turbulence-originated magnetic diffusivity of the fluid is reduced and the decay time of a large-scale magnetic field or the cycle times of oscillating turbulent dynamo models are increased. If, however, the fluctuations of conductivity and flow in a certain well-defined direction are correlated, an additional diamagnetic pumping effect results, transporting the magnetic field in the opposite direction to the diffusivity flux vector $\langle \unicode[STIX]{x1D702}^{\prime }\boldsymbol{u}^{\prime }\rangle$ . In the presence of global rotation, even for homogeneous turbulence fields, an alpha effect appears. If the characteristic values of the outer core of the Earth or the solar convection zone are applied, the dynamo number of the new alpha effect does not reach supercritical values to operate as an $\unicode[STIX]{x1D6FC}^{2}$ -dynamo but oscillating $\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FA}$ -dynamos with differential rotation are not excluded.


2001 ◽  
Vol 203 ◽  
pp. 186-188
Author(s):  
S. B. F. Dorch ◽  
Å. Nordlund

We present results from three-dimensional numerical simulations of the interaction of stratified over-turning solar-like convection with a large-scale magnetic field: By the very nature of stellar convection, even a strong magnetic field may be held down at the bottom of the convection zone, rendering the flux storage problem obsolete. This effect may also explain the observations of some magnetically active but fully convective late type dwarf stars.


1997 ◽  
Vol 163 ◽  
pp. 561-565 ◽  
Author(s):  
Mark Wardle

AbstractAngular momentum transport in protostellar disks can be achieved by the action of a large scale magnetic field that runs vertically through the disk. The magnetic field centrifugally drives material from the disk surfaces into a wind, initiating a bipolar outflow. One apparent difficulty for this model is that the conductivity of the disk is extremely low in the inner 0.1–10 AU of the disk, where grains are the dominant charge carriers. Near the midplane, charged grains are unable to drift through the neutral gas and there is negligible coupling between the magnetic field and the disk material.However, the removal of angular momentum and acceleration of a wind by a magnetic field can still take place in the surface layers of the disk where the gas conductivity increases dramatically. Solutions to the multifluid MHD equations for the vertical structure of a disk at a particular radius are presented. Most of the disk material sits in hydrostatic equilibrium and does not interact with the magnetic field running vertically through it. Near the disk surfaces, the coupling between the magnetic field and disk material is sufficient to initiate an outflow from the disk surface.


Author(s):  
R. Chaudhary ◽  
S. P. Vanka ◽  
B. G. Thomas

Magnetic fields are crucial in controlling flow in various physical processes of significance. One of these processes, which has significant application of a magnetic field, is continuous casting of steel, where different magnetic field configurations are used to control the turbulent steel flow in the mold to minimize defects in the cast steel. This study has been undertaken to analyze the effect of magnetic field on mean velocities and turbulence parameters in the molten metal flows through a square duct. Direct Numerical Simulations without using a sub-grid scale (SGS) model have been used to characterize the three-dimensional transient flow. The coupled Navier-Stokes-MHD equations have been solved with a three-dimensional fractional-step numerical procedure. Because liquid metals have low magnetic Reynolds number, the induced magnetic field has been neglected and the electric potential method for magnetic field-flow coupling has been implemented. Initially, laminar simulations in a square duct have been performed and results generated were compared with previous series solutions. Next, simulations of a non-MHD flow in a square duct at low Reynolds number were performed and satisfactorily compared with results of a previous DNS study. Subsequently, different levels of a magnetic field were applied to study its effect on the turbulence until the flow completely laminarized. Time-dependent and time-averaged flows have been studied through mean velocities and fluctuations, and power spectrums of instantaneous velocities.


2018 ◽  
Vol 614 ◽  
pp. A101 ◽  
Author(s):  
M. S. Väisälä ◽  
F. A. Gent ◽  
M. Juvela ◽  
M. J. Käpylä

Context.Efforts to compare polarization measurements with synthetic observations from magnetohydrodynamics (MHD) models have previously concentrated on the scale of molecular clouds.Aims.We extend the model comparisons to kiloparsec scales, taking into account hot shocked gas generated by supernovae and a non-uniform dynamo-generated magnetic field at both large and small scales down to 4 pc spatial resolution.Methods.We used radiative transfer calculations to model dust emission and polarization on top of MHD simulations. We computed synthetic maps of column densityNH, polarization fractionp, and polarization angle dispersionS, and studied their dependencies on important properties of MHD simulations. These include the large-scale magnetic field and its orientation, the small-scale magnetic field, and supernova-driven shocks.Results.Similar filament-like structures ofSas seen in thePlanckall-sky maps are visible in our synthetic results, although the smallest scale structures are absent from our maps. Supernova-driven shock fronts andSdo not show significant correlation. Instead,Scan clearly be attributed to the distribution of the small-scale magnetic field. We also find that the large-scale magnetic field influences the polarization properties, such that, for a given strength of magnetic fluctuation, a strong plane of the sky mean field weakens the observedS, while strengtheningp. The anticorrelation ofpandS, and decreasingpas a function ofNHare consistent across all synthetic observations. The magnetic fluctuations follow an exponential distribution, rather than Gaussian characteristic of flows with intermittent repetitive shocks.Conclusions.The observed polarization properties and column densities are sensitive to the line-of-sight distance over which the emission is integrated. Studying synthetic maps as the function of maximum integration length will further help with the interpretation of observations. The effects of the large-scale magnetic field orientation on the polarization properties are difficult to be quantified from observations solely, but MHD models might turn out to be useful for separating the effect of the large-scale mean field.


2010 ◽  
Vol 6 (S273) ◽  
pp. 83-88
Author(s):  
K. Kemel ◽  
A. Brandenburg ◽  
N. Kleeorin ◽  
I. Rogachevskii

AbstractWhile the rising flux tube paradigm is an elegant theory, its basic assumptions, thin flux tubes at the bottom of the convection zone with field strengths two orders of magnitude above equipartition, remain numerically unverified at best. As such, in recent years the idea of a formation of sunspots near the top of the convection zone has generated some interest. The presence of turbulence can strongly enhance diffusive transport mechanisms, leading to an effective transport coefficient formalism in the mean-field formulation. The question is what happens to these coefficients when the turbulence becomes anisotropic due to a strong large-scale mean magnetic field. It has been noted in the past that this anisotropy can also lead to highly non-diffusive behavior. In the present work we investigate the formation of large-scale magnetic structures as a result of a negative contribution of turbulence to the large-scale effective magnetic pressure in the presence of stratification. In direct numerical simulations of forced turbulence in a stratified box, we verify the existence of this effect. This phenomenon can cause formation of large-scale magnetic structures even from initially uniform large-scale magnetic field.


2021 ◽  
Vol 87 (1) ◽  
Author(s):  
Valery V. Pipin

We study the helicity density patterns which can result from the emerging bipolar regions. Using the relevant dynamo model and the magnetic helicity conservation law we find that the helicity density patterns around the bipolar regions depend on the configuration of the ambient large-scale magnetic field, and in general they show a quadrupole distribution. The position of this pattern relative to the equator can depend on the tilt of the bipolar region. We compute the time–latitude diagrams of the helicity density evolution. The longitudinally averaged effect of the bipolar regions shows two bands of sign for the density distributions in each hemisphere. Similar helicity density patterns are provided by the helicity density flux from the emerging bipolar regions subjected to surface differential rotation.


Sign in / Sign up

Export Citation Format

Share Document