scholarly journals The supernova-regulated ISM

2018 ◽  
Vol 614 ◽  
pp. A101 ◽  
Author(s):  
M. S. Väisälä ◽  
F. A. Gent ◽  
M. Juvela ◽  
M. J. Käpylä

Context.Efforts to compare polarization measurements with synthetic observations from magnetohydrodynamics (MHD) models have previously concentrated on the scale of molecular clouds.Aims.We extend the model comparisons to kiloparsec scales, taking into account hot shocked gas generated by supernovae and a non-uniform dynamo-generated magnetic field at both large and small scales down to 4 pc spatial resolution.Methods.We used radiative transfer calculations to model dust emission and polarization on top of MHD simulations. We computed synthetic maps of column densityNH, polarization fractionp, and polarization angle dispersionS, and studied their dependencies on important properties of MHD simulations. These include the large-scale magnetic field and its orientation, the small-scale magnetic field, and supernova-driven shocks.Results.Similar filament-like structures ofSas seen in thePlanckall-sky maps are visible in our synthetic results, although the smallest scale structures are absent from our maps. Supernova-driven shock fronts andSdo not show significant correlation. Instead,Scan clearly be attributed to the distribution of the small-scale magnetic field. We also find that the large-scale magnetic field influences the polarization properties, such that, for a given strength of magnetic fluctuation, a strong plane of the sky mean field weakens the observedS, while strengtheningp. The anticorrelation ofpandS, and decreasingpas a function ofNHare consistent across all synthetic observations. The magnetic fluctuations follow an exponential distribution, rather than Gaussian characteristic of flows with intermittent repetitive shocks.Conclusions.The observed polarization properties and column densities are sensitive to the line-of-sight distance over which the emission is integrated. Studying synthetic maps as the function of maximum integration length will further help with the interpretation of observations. The effects of the large-scale magnetic field orientation on the polarization properties are difficult to be quantified from observations solely, but MHD models might turn out to be useful for separating the effect of the large-scale mean field.

1993 ◽  
Vol 157 ◽  
pp. 255-261
Author(s):  
N. Kleeorin ◽  
I. Rogachevskii

The nonlinear (in terms of the large-scale magnetic field) effect of the modification of the magnetic force by an advanced small-scale magnetohydrodynamic (MHD) turbulence is considered. The phenomenon is due to the generation of magnetic fluctuations at the expense of hydrodynamic pulsations. It results in a decrease of the elasticity of the large-scale magnetic field.The renormalization group (RNG) method was employed for the investigation of the MHD turbulence at the large magnetic Reynolds number. It was found that the level of the magnetic fluctuations can exceed that obtained from the equipartition assumption due to the inverse energy cascade in advanced MHD turbulence.This effect can excite an instability of the large-scale magnetic field due to the energy transfer from the small-scale turbulent pulsations. This instability is an example of the inverse energy cascade in advanced MHD turbulence. It may act as a mechanism for the large-scale magnetic ropes formation in the solar convective zone and spiral galaxies.


2016 ◽  
Vol 12 (S328) ◽  
pp. 237-239
Author(s):  
A. A. Vidotto

AbstractSynoptic maps of the vector magnetic field have routinely been made available from stellar observations and recently have started to be obtained for the solar photospheric field. Although solar magnetic maps show a multitude of details, stellar maps are limited to imaging large-scale fields only. In spite of their lower resolution, magnetic field imaging of solar-type stars allow us to put the Sun in a much more general context. However, direct comparison between stellar and solar magnetic maps are hampered by their dramatic differences in resolution. Here, I present the results of a method to filter out the small-scale component of vector fields, in such a way that comparison between solar and stellar (large-scale) magnetic field vector maps can be directly made. This approach extends the technique widely used to decompose the radial component of the solar magnetic field to the azimuthal and meridional components as well, and is entirely consistent with the description adopted in several stellar studies. This method can also be used to confront synoptic maps synthesised in numerical simulations of dynamo and magnetic flux transport studies to those derived from stellar observations.


1976 ◽  
Vol 71 ◽  
pp. 323-344 ◽  
Author(s):  
K.-H. Rädler

One of the most striking features of both the magnetic field and the motions observed at the Sun is their highly irregular or random character which indicates the presence of rather complicated magnetohydrodynamic processes. Of great importance in this context is a comprehension of the behaviour of the large scale components of the magnetic field; large scales are understood here as length scales in the order of the solar radius and time scales of a few years. Since there is a strong relationship between these components and the solar 22-years cycle, an insight into the mechanism controlling these components also provides for an insight into the mechanism of the cycle. The large scale components of the magnetic field are determined not only by their interaction with the large scale components of motion. On the contrary, a very important part is played also by an interaction between the large and the small scale components of magnetic field and motion so that a very complicated situation has to be considered.


2002 ◽  
Vol 456 ◽  
pp. 219-237 ◽  
Author(s):  
FAUSTO CATTANEO ◽  
DAVID W. HUGHES ◽  
JEAN-CLAUDE THELEN

By considering an idealized model of helically forced flow in an extended domain that allows scale separation, we have investigated the interaction between dynamo action on different spatial scales. The evolution of the magnetic field is studied numerically, from an initial state of weak magnetization, through the kinematic and into the dynamic regime. We show how the choice of initial conditions is a crucial factor in determining the structure of the magnetic field at subsequent times. For a simulation with initial conditions chosen to favour the growth of the small-scale field, the evolution of the large-scale magnetic field can be described in terms of the α-effect of mean field magnetohydrodynamics. We have investigated this feature further by a series of related numerical simulations in smaller domains. Of particular significance is that the results are consistent with the existence of a nonlinearly driven α-effect that becomes saturated at very small amplitudes of the mean magnetic field.


2009 ◽  
Vol 5 (S264) ◽  
pp. 197-201
Author(s):  
Dhrubaditya Mitra ◽  
Reza Tavakol ◽  
Axel Brandenburg ◽  
Petri J. Käpylä

AbstractWe summarise recent results form direct numerical simulations of both non-rotating helically forced and rotating convection driven MHD equations in spherical wedge-shape domains. In the former, using perfect-conductor boundary conditions along the latitudinal boundaries we observe oscillations, polarity reversals and equatorward migration of the large-scale magnetic fields. In the latter we obtain angular velocity with cylindrical contours and large-scale magnetic field which shows oscillations, polarity reversals but poleward migration. The occurrence of these behviours in direct numerical simulations is clearly of interest. However the present models as they stand are not directly applicable to the solar dynamo problem. Nevertheless, they provide general insights into the operation of turbulent dynamos.


1993 ◽  
Vol 157 ◽  
pp. 481-486
Author(s):  
N. Kleeorin ◽  
I. Rogachevskii ◽  
A. Eviatar

Magnetic field observations in the dayside ionosphere of Venus revealed the magnetic flux ropes (Russell and Elphic 1979). General properties of these small-scale magnetic field structures can be explained by the theory of magnetic fluctuations excited by random hydrodynamic flows of ionospheric plasma.A nonlinear theory of the flux tubes formation based on the Zeldovich's mechanism of amplification of the magnetic fluctuations is proposed. A nonlinear equation describing the evolution of the correlation function of the magnetic field can be derived from the induction equation, the nonlinearity being connected with the Hall effect. The large magnetic Reynolds number limit allows an asymptotic study by a modified WKB method.On the basis of this theory it is possible to explain why the flux tubes are not observed if there is a strong regular large-scale magnetic field when the ionopause is low. The theory predicts the cross section of the flux ropes in the ionosphere of Venus and the maximum value of the magnetic field inside the flux tube.


2009 ◽  
Vol 16 (1) ◽  
pp. 77-81 ◽  
Author(s):  
R. V. E. Lovelace ◽  
G. S. Bisnovatyi-Kogan ◽  
D. M. Rothstein

Abstract. Activity of the nuclei of galaxies and stellar mass systems involving disk accretion to black holes is thought to be due to (1) a small-scale turbulent magnetic field in the disk (due to the magneto-rotational instability or MRI) which gives a large viscosity enhancing accretion, and (2) a large-scale magnetic field which gives rise to matter outflows and/or electromagnetic jets from the disk which also enhances accretion. An important problem with this picture is that the enhanced viscosity is accompanied by an enhanced magnetic diffusivity which acts to prevent the build up of a significant large-scale field. Recent work has pointed out that the disk's surface layers are non-turbulent and thus highly conducting (or non-diffusive) because the MRI is suppressed high in the disk where the magnetic and radiation pressures are larger than the thermal pressure. Here, we calculate the vertical (z) profiles of the stationary accretion flows (with radial and azimuthal components), and the profiles of the large-scale, magnetic field taking into account the turbulent viscosity and diffusivity due to the MRI and the fact that the turbulence vanishes at the surface of the disk. We derive a sixth-order differential equation for the radial flow velocity vr(z) which depends mainly on the midplane thermal to magnetic pressure ratio β>1 and the Prandtl number of the turbulence P=viscosity/diffusivity. Boundary conditions at the disk surface take into account a possible magnetic wind or jet and allow for a surface current in the highly conducting surface layer. The stationary solutions we find indicate that a weak (β>1) large-scale field does not diffuse away as suggested by earlier work.


2016 ◽  
Vol 82 (2) ◽  
Author(s):  
J. Squire ◽  
A. Bhattacharjee

A novel large-scale dynamo mechanism, the magnetic shear-current effect, is discussed and explored. The effect relies on the interaction of magnetic fluctuations with a mean shear flow, meaning the saturated state of the small-scale dynamo can drive a large-scale dynamo – in some sense the inverse of dynamo quenching. The dynamo is non-helical, with the mean field ${\it\alpha}$ coefficient zero, and is caused by the interaction between an off-diagonal component of the turbulent resistivity and the stretching of the large-scale field by shear flow. Following up on previous numerical and analytic work, this paper presents further details of the numerical evidence for the effect, as well as an heuristic description of how magnetic fluctuations can interact with shear flow to produce the required electromotive force. The pressure response of the fluid is fundamental to this mechanism, which helps explain why the magnetic effect is stronger than its kinematic cousin, and the basic idea is related to the well-known lack of turbulent resistivity quenching by magnetic fluctuations. As well as being interesting for its applications to general high Reynolds number astrophysical turbulence, where strong small-scale magnetic fluctuations are expected to be prevalent, the magnetic shear-current effect is a likely candidate for large-scale dynamo in the unstratified regions of ionized accretion disks. Evidence for this is discussed, as well as future research directions and the challenges involved with understanding details of the effect in astrophysically relevant regimes.


2020 ◽  
Vol 223 (2) ◽  
pp. 1398-1411
Author(s):  
B R McDermott ◽  
P A Davidson

SUMMARY In a rapidly rotating Boussinesq fluid, buoyant anomalies radiate low-frequency inertial wave packets that disperse along the rotation axis. The wave packets lead to axially elongated vortices, which propagate negative (positive) kinetic helicity upwards (downwards) with respect to the rotation vector. The kinetic helicity carried by the inertial wave packets is near-maximal relative to the velocity and vorticity fields. In classical mean-field theory, kinetic helicity is often associated with the α-effect, which is thought to be an important ingredient for planetary dynamos. The modification of inertial wave packets in the presence of a transverse uniform magnetic field is investigated here, motivated by small-scale dynamics in planetary cores, where a large-scale magnetic field affects fluid motions. We study numerically the dispersion of wave packets from an isolated buoyant source and from a random layer of buoyant anomalies, while varying the Lehnert number Le—the ratio of the frequencies of Alfvén and inertial waves. We find that for Le < 0.1, the vortices are columnar and continue to segregate kinetic helicity so that it is negative (positive) above (below) the buoyant source. Importantly, the wave packets induce an α-effect, which remains strong and coherent for Earth-like values of the Lehnert number (Le < 0.1). The interaction of wave packets emitted by multiple neighbouring buoyant sources results in an α-effect that is stronger than the α-effect induced by wave packets launched from an isolated buoyant source, and we provide an analytical explanation for this. The coherence of the α-effect induced by the wave packets, for Earth-like values of the Lehnert number, lends support to the α2 dynamo model driven by helical waves.


2020 ◽  
Vol 86 (3) ◽  
Author(s):  
Shangbin Yang ◽  
V. V. Pipin ◽  
D. D. Sokoloff ◽  
K. M. Kuzanyan ◽  
Hongqi Zhang

In this paper we study the effects of the net magnetic helicity density on the hemispheric symmetry of the dynamo generated large-scale magnetic field. Our study employs the axisymmetric dynamo model which takes into account the nonlinear effect of magnetic helicity conservation. We find that, on the surface, the net magnetic helicity follows the evolution of the parity of the large-scale magnetic field. Random fluctuations of the $\unicode[STIX]{x1D6FC}$ -effect and the helicity fluxes can invert the causal relationship, i.e. the net magnetic helicity or the imbalance of magnetic helicity fluxes can drive the magnetic parity breaking. We also found that evolution of the net magnetic helicity of the small-scale fields follows the evolution of the net magnetic helicity of the large-scale fields with some time lag. We interpret this as an effect of the difference of the magnetic helicity fluxes out of the Sun from the large and small scales.


Sign in / Sign up

Export Citation Format

Share Document