scholarly journals Particle acceleration in fast magnetic reconnection

2010 ◽  
Vol 6 (S274) ◽  
pp. 62-71
Author(s):  
A. Lazarian ◽  
G. Kowal ◽  
E. de Gouveia Dal Pino ◽  
E. Vishniac

AbstractOur numerical simulations show that the reconnection of magnetic field becomes fast in the presence of weak turbulence in the way consistent with the Lazarian & Vishniac (1999) model of fast reconnection. This process in not only important for understanding of the origin and evolution of the large-scale magnetic field, but is seen as a possibly efficient particle accelerator producing cosmic rays through the first order Fermi process. In this work we study the properties of particle acceleration in the reconnection zones in our numerical simulations and show that the particles can be efficiently accelerated via the first order Fermi acceleration.

2009 ◽  
Vol 5 (S264) ◽  
pp. 197-201
Author(s):  
Dhrubaditya Mitra ◽  
Reza Tavakol ◽  
Axel Brandenburg ◽  
Petri J. Käpylä

AbstractWe summarise recent results form direct numerical simulations of both non-rotating helically forced and rotating convection driven MHD equations in spherical wedge-shape domains. In the former, using perfect-conductor boundary conditions along the latitudinal boundaries we observe oscillations, polarity reversals and equatorward migration of the large-scale magnetic fields. In the latter we obtain angular velocity with cylindrical contours and large-scale magnetic field which shows oscillations, polarity reversals but poleward migration. The occurrence of these behviours in direct numerical simulations is clearly of interest. However the present models as they stand are not directly applicable to the solar dynamo problem. Nevertheless, they provide general insights into the operation of turbulent dynamos.


2009 ◽  
Vol 24 (19) ◽  
pp. 1461-1472 ◽  
Author(s):  
R. SCHLICKEISER

Large-scale spatial variations of the guide magnetic field of interplanetary and interstellar plasmas give rise to the adiabatic focusing term in the Fokker–Planck transport equation of cosmic rays. As a consequence of the adiabatic focusing term, the diffusion approximation to cosmic ray transport in the weak focusing limit gives rise to first-order Fermi acceleration of energetic particles if the product HL of the cross helicity state of Alfvenic turbulence H and the focusing length L is negative. The basic physical mechanisms for this new acceleration process are clarified and the astrophysical conditions for efficient acceleration are investigated. It is shown that in the interstellar medium this mechanism preferentially accelerates cosmic ray hadrons over 10 orders of magnitude in momentum. Due to heavy Coulomb and ionization losses at low momenta, injection or preacceleration of particles above the threshold momentum pc≃0.17Z2/3 GeV /c is required.


2001 ◽  
Vol 203 ◽  
pp. 186-188
Author(s):  
S. B. F. Dorch ◽  
Å. Nordlund

We present results from three-dimensional numerical simulations of the interaction of stratified over-turning solar-like convection with a large-scale magnetic field: By the very nature of stellar convection, even a strong magnetic field may be held down at the bottom of the convection zone, rendering the flux storage problem obsolete. This effect may also explain the observations of some magnetically active but fully convective late type dwarf stars.


2021 ◽  
Vol 87 (1) ◽  
Author(s):  
Valery V. Pipin

We study the helicity density patterns which can result from the emerging bipolar regions. Using the relevant dynamo model and the magnetic helicity conservation law we find that the helicity density patterns around the bipolar regions depend on the configuration of the ambient large-scale magnetic field, and in general they show a quadrupole distribution. The position of this pattern relative to the equator can depend on the tilt of the bipolar region. We compute the time–latitude diagrams of the helicity density evolution. The longitudinally averaged effect of the bipolar regions shows two bands of sign for the density distributions in each hemisphere. Similar helicity density patterns are provided by the helicity density flux from the emerging bipolar regions subjected to surface differential rotation.


1980 ◽  
Vol 91 ◽  
pp. 323-326
Author(s):  
D. J. Mullan ◽  
R. S. Steinolfson

The acceleration of solar cosmic rays in association with certain solar flares is known to be highly correlated with the propagation of an MHD shock through the solar corona (Svestka, 1976). The spatial structure of the sources of solar cosmic rays will be determined by those regions of the corona which are accessible to the flare-induced shock. The regions to which the flare shock is permitted to propagate are determined by the large scale magnetic field structure in the corona. McIntosh (1972, 1979) has demonstrated that quiescent filaments form a single continuous feature (a “baseball stitch”) around the surface of the sun. It is known that helmet streamers overlie quiescent filaments (Pneuman, 1975), and these helmet streamers contain large magnetic neutral sheets which are oriented essentially radially. Hence the magnetic field structure in the low solar corona is characterized by a large-scale radial neutral sheet which weaves around the entire sun following the “baseball stitch”. There is therefore a high probability that as a shock propagates away from a flare, it will eventually encounter this large neutral sheet.


2018 ◽  
Vol 27 (10) ◽  
pp. 1844006
Author(s):  
A. Dorodnitsyn ◽  
T. Kallman

Large scale magnetic field can be easily dragged from galactic scales toward AGN along with accreting gas. There, it can contribute to both the formation of AGN “torus” and help to remove angular momentum from the gas which fuels AGN accretion disk. However the dynamics of such gas is also strongly influenced by the radiative feedback from the inner accretion disk. Here we present results from the three-dimensional simulations of pc-scale accretion which is exposed to intense X-ray heating.


2013 ◽  
Vol 9 (S302) ◽  
pp. 146-147
Author(s):  
Sudeshna Boro Saikia ◽  
Sandra V. Jeffers ◽  
Pascal Petit ◽  
Stephen Marsden ◽  
Julien Morin ◽  
...  

AbstractHD 206860 is a young planet (HN Peg b) hosting star of spectral type G0V and it has a potential debris disk around it. In this work we measure the longitudinal magnetic field of HD 206860 using spectropolarimetric data and we measure the chromospheric activity using Ca II H&K, H-alpha and Ca II infrared triplet lines.


Sign in / Sign up

Export Citation Format

Share Document