scholarly journals The Stellar Population of the Thin Disk

2009 ◽  
Vol 5 (S265) ◽  
pp. 304-312
Author(s):  
Carlos Allende Prieto

AbstractWe discuss recent observations of stars located close to the symmetry plane of the Milky Way, and examine them in the context of theories of Galaxy formation and evolution. The kinematics, ages, and compositions of thin disk stars in the solar neighborhood display complex patterns, and interesting correlations. The Galactic disk does not seem to pose any unsurmountable obstacles to hierarchical galaxy formation theories, but a model of the Milky Way able to reproduce the complexity found in the data will likely require a meticulous study of a significant fraction of the stars in the Galaxy. Making such an observational effort seems necessary in order to make a physics laboratory out of our own galaxy, and ultimately ensure that the most relevant processes are properly understood.

2013 ◽  
Vol 9 (S298) ◽  
pp. 17-27
Author(s):  
Thomas Bensby

AbstractThick disks appear to be common in external large spiral galaxies and our own Milky Way also hosts one. The existence of a thick disk is possibly directly linked to the formation history of the host galaxy and if its properties is known it can constrain models of galaxy formation and help us to better understand galaxy formation and evolution. This brief review attempts to highlight some of the characteristics of the Galactic thick disk and how it relates to other stellar populations such as the thin disk and the Galactic bulge. Focus has been put on results from high-resolution spectroscopic data obtained during the last 10 to 15 years.


2009 ◽  
Vol 5 (S262) ◽  
pp. 323-324
Author(s):  
Adriana de Lorenzo-Cáceres ◽  
Alexandre Vazdekis ◽  
Jesús Falcón-Barroso ◽  
Inma Martínez-Valpuesta

Double bars might be the key mechanisms to transport gas to the very central regions of galaxies, so double-barred galaxies are key objects to better understand the galaxy formation and evolution scenarios. In order to disentangle the role of double bars in the galaxy build up, we are performing a whole kinematical and stellar population analysis of these objects from high S/N spectroscopic data.


2020 ◽  
Vol 497 (1) ◽  
pp. 626-631 ◽  
Author(s):  
Adebusola B Alabi ◽  
Anna Ferré-Mateu ◽  
Duncan A Forbes ◽  
Aaron J Romanowsky ◽  
Jean P Brodie

ABSTRACT We present new spectra obtained using Keck/KCWI and perform kinematics and stellar population analyses of the shell galaxy NGC 474, from both the galaxy centre and a region from the outer shell. We show that both regions have similarly extended star formation histories although with different stellar population properties. The central region of NGC 474 is dominated by intermediate-aged stars (8.3 ± 0.3 Gyr) with subsolar metallicity ([Z/H] = −0.24 ± 0.07 dex) while the observed shell region, which hosts a substantial population of younger stars, has a mean luminosity-weighted age of 4.0 ± 0.5 Gyr with solar metallicities ([Z/H] = −0.03 ± 0.09 dex). Our results are consistent with a scenario in which NGC 474 experienced a major to intermediate merger with a log$(M_*/\rm M_\odot) \sim 10$ mass satellite galaxy at least ${\sim}2$ Gyr ago which produced its shell system. This work shows that the direct spectroscopic study of low-surface brightness stellar features, such as shells, is now feasible and opens up a new window to understanding galaxy formation and evolution.


Author(s):  
Mauro D’Onofrio ◽  
Paola Marziani ◽  
Cesare Chiosi

We review the properties of the established Scaling Relations (SRs) of galaxies and active galactic nuclei (AGN), focusing on their origin and expected evolution back in time, providing a short history of the most important progresses obtained up to now and discussing the possible future studies. We also try to connect the observed SRs with the physical mechanisms behind them, examining to what extent current models reproduce the observational data. The emerging picture clarifies the complexity intrinsic to the galaxy formation and evolution process as well as the basic uncertainties still affecting our knowledge of the AGN phenomenon. At the same time, however, it suggests that the detailed analysis of the SRs can profitably contribute to our understanding of galaxies and AGN.


2019 ◽  
Vol 622 ◽  
pp. L13 ◽  
Author(s):  
Stefan Meingast ◽  
João Alves ◽  
Verena Fürnkranz

We report the discovery of a large, dynamically cold, coeval stellar stream that is currently traversing the immediate solar neighborhood at a distance of only 100 pc. The structure was identified in a wavelet decomposition of the 3D velocity space of all stars within 300 pc of the Sun. Its members form a highly elongated structure with a length of at least 400 pc, while its vertical extent measures only about 50 pc. Stars in the stream are not isotropically distributed but instead form two parallel lanes with individual local overdensities, that may correspond to a remnant core of a tidally disrupted cluster or OB association. Its members follow a very well-defined main sequence in the observational Hertzsprung–Russel diagram and also show a remarkably low 3D velocity dispersion of only 1.3 km s−1. These findings strongly suggest a common origin as a single coeval stellar population. An extrapolation of the present-day mass function indicates a total mass of at least 2000 M⊙, making it larger than most currently known clusters or associations in the solar neighborhood. We estimated the age of the stream to be around 1 Gyr based on a comparison with a set of isochrones and giant stars in our member selection and find a mean metallicity of [Fe/H] = −0.04. This structure may very well represent the Galactic disk counterpart to the prominent stellar streams observed in the Milky Way halo. As such, it constitutes a new valuable probe to constrain the Galaxy’s mass distribution.


1995 ◽  
Vol 164 ◽  
pp. 133-149
Author(s):  
Rosemary F.G. Wyse

The Milky Way Galaxy offers a unique opportunity for testing theories of galaxy formation and evolution. The study of the spatial distribution, kinematics and chemical abundances of stars in the Milky Way Galaxy allows one to address specific questions pertinent to this meeting such as (i)When was the Galaxy assembled? Is this an ongoing process? What was the merging history of the Milky Way?(ii)When did star formation occur in what is now “The Milky Way Galaxy”? Where did the star formation occur then? What was the stellar Initial Mass Function?(iii)How much dissipation of energy was there before and during the formation of the different stellar components of the Galaxy?(iv)What are the relationships among the different stellar components of the Galaxy?(v)Was angular momentum conserved during formation of the disk(s) of the Galaxy?(vi)What is the shape of the dark halo?(vii)Is there dissipative (disk) dark matter?


2011 ◽  
Vol 20 (10) ◽  
pp. 1771-1777
Author(s):  
HOUJUN MO

Given that dark matter is gravitationally dominant in the universe, and that galaxy formation is closely related to dark matter halos, a key first step in understanding galaxy formation and evolution in the CDM paradigm is to quantify the galaxy-halo connection for galaxies of different properties. Here I will present results about the halo/galaxy connection obtained from two different methods. One is based on the conditional luminosity function, which describes the occupation of galaxies in halos of different masses, and the other is based on galaxy systems properly selected to represent dark halos.


2020 ◽  
Vol 496 (1) ◽  
pp. 80-94 ◽  
Author(s):  
Fiorenzo Vincenzo ◽  
Chiaki Kobayashi

ABSTRACT In order to understand the roles of metal flows in galaxy formation and evolution, we analyse our self-consistent cosmological chemodynamical simulation of a Milky Way like galaxy during its thin-disc phase. Our simulated galaxy disc qualitatively reproduces the variation of the dichotomy in [α/Fe]–[Fe/H] at different Galactocentric distances as derived by APOGEE-DR16, as well as the stellar age distribution in [α/Fe]–[Fe/H] from APOKASC-2. The disc grows from the inside out, with a radial gradient in the star-formation rate during the entire phase. Despite the radial dependence, the outflow-to-infall ratio of metals in our simulated halo shows a time-independent profile scaling with the disc growth. The simulated disc undergoes two modes of gas inflow: (i) an infall of metal-poor and relatively low-[α/Fe] gas, and (ii) a radial flow where already chemically enriched gas moves inwards with an average velocity of ∼0.7 km s−1. Moreover, we find that stellar migrations mostly happen outwards, on typical time-scales of ∼5 Gyr. Our predicted radial metallicity gradients agree with the observations from APOGEE-DR16, and the main effect of stellar migrations is to flatten the radial metallicity profiles by 0.05 dex/kpc in the slopes. We also show that the effect of migrations can appear more important in [α/Fe] than in the [Fe/H]–age relation of thin-disc stars.


1996 ◽  
Vol 171 ◽  
pp. 11-18
Author(s):  
R.C. Kennicutt

Nearby spiral galaxies offer vital clues to some of the most fundamental questions about galaxy formation and evolution: What is the star formation history of the universe, past and future? When did disks form, during the final stages of a single primeval collapse, or as a continuous or episodic process? What is the evolutionary nature of the Hubble sequence, and what are the physical mechanisms that dictate the present-day Hubble type of a galaxy? Was Hubble type imprinted at birth, or can it be deterined or at least modified by infall, mergers, or secular dynamical evolution within the galaxy? These issues are not specific to spirals, of course, and much of this conference will address just these questions in a broader context. However present-day spirals offer unique advantages for studying these problems; they exhibit a broad range of dynamical and evolutionary properties, and the dynamical fragility of disks makes them excellent seismometers of galaxy interaction and merger rates at recent epochs.


2016 ◽  
Vol 12 (S323) ◽  
pp. 288-292
Author(s):  
Alessia Longobardi ◽  
Magda Arnaboldi ◽  
Ortwin Gerhard

AbstractCosmological simulations allow us to study in detail the evolution of galaxy halos in cluster environments, but the extremely low surface brightness of such components makes it difficult to gather observational constraints. Planetary nebulas (PNs) offer a unique tool to investigate these environments owing to their strong [OIII] emission line. We study the light and kinematics of the Virgo cluster and its central galaxy, M87, prime targets to address the topic of galaxy formation and evolution in dense environments. We make use of a deep and extended PN sample (~300 objects) that extends out to 150 kpc in radius from M87’s centre. We show that at all distance the galaxy halo overlaps with the Virgo intracluster light (ICL). Halo and ICL are dynamically distinct components with different parent stellar populations, consistent with the halo of M87 being redder and more metal rich than the ICL. The synergy between PN kinematic information and deep V/B-band photometry made it possible to unravel an ongoing accretion process in the outskirt of M87. This accretion event represents a non-negligible perturbation of the halo light, showing that this galaxy is still growing by accretion of smaller systems.


Sign in / Sign up

Export Citation Format

Share Document