scholarly journals Extended stellar systems in the solar neighborhood

2019 ◽  
Vol 622 ◽  
pp. L13 ◽  
Author(s):  
Stefan Meingast ◽  
João Alves ◽  
Verena Fürnkranz

We report the discovery of a large, dynamically cold, coeval stellar stream that is currently traversing the immediate solar neighborhood at a distance of only 100 pc. The structure was identified in a wavelet decomposition of the 3D velocity space of all stars within 300 pc of the Sun. Its members form a highly elongated structure with a length of at least 400 pc, while its vertical extent measures only about 50 pc. Stars in the stream are not isotropically distributed but instead form two parallel lanes with individual local overdensities, that may correspond to a remnant core of a tidally disrupted cluster or OB association. Its members follow a very well-defined main sequence in the observational Hertzsprung–Russel diagram and also show a remarkably low 3D velocity dispersion of only 1.3 km s−1. These findings strongly suggest a common origin as a single coeval stellar population. An extrapolation of the present-day mass function indicates a total mass of at least 2000 M⊙, making it larger than most currently known clusters or associations in the solar neighborhood. We estimated the age of the stream to be around 1 Gyr based on a comparison with a set of isochrones and giant stars in our member selection and find a mean metallicity of [Fe/H] = −0.04. This structure may very well represent the Galactic disk counterpart to the prominent stellar streams observed in the Milky Way halo. As such, it constitutes a new valuable probe to constrain the Galaxy’s mass distribution.

2009 ◽  
Vol 5 (S265) ◽  
pp. 304-312
Author(s):  
Carlos Allende Prieto

AbstractWe discuss recent observations of stars located close to the symmetry plane of the Milky Way, and examine them in the context of theories of Galaxy formation and evolution. The kinematics, ages, and compositions of thin disk stars in the solar neighborhood display complex patterns, and interesting correlations. The Galactic disk does not seem to pose any unsurmountable obstacles to hierarchical galaxy formation theories, but a model of the Milky Way able to reproduce the complexity found in the data will likely require a meticulous study of a significant fraction of the stars in the Galaxy. Making such an observational effort seems necessary in order to make a physics laboratory out of our own galaxy, and ultimately ensure that the most relevant processes are properly understood.


2001 ◽  
Vol 204 ◽  
pp. 419-419
Author(s):  
J. L. Hou ◽  
Nikos Prantzos ◽  
Samuel Boissier

A detailed investigation of the abundance gradients and their evolution along the Galactic disk has recently appeared (Hou, J. L., Prantzos, N., & Boissier, S. 2000, A&A, in press; astro-ph/0007164). A chemical evolution model of S. Boissier & N. Pranzos (1999, MNRAS, 307, 857) was quite successful in reproducing the main observational constraints both in the solar neighborhood and the entire Milky Way disk. Studied elements include He, C, N, O, Ne, Mg, Al, Si, S, Ar and Fe. We use metallicity dependent yields for massive stars with and without mass loss. We find that most observed abundance profiles are correctly reproduced by massive star yields, but C and N require supplementary sources. We argue that massive, mass losing stars can totally account for the abundance profile of C, while intermediate mass stars are the main source of N. We also find that the adopted “inside-out” formation scheme for the Milky Way disk produces abundance profiles steeper in the past. Using current data on planetary nebulae of type I, II, and III, on N, Ne, S, Ar as observational constraints for gradient evolution, we find that it is difficult to conclude whether the gradient steepens or flattens with time. However, for a given interval of Galactic age, our model predicts that the corresponding abundance scatter is smaller in the inner disk than in the outer regions.


Author(s):  
David M. Nataf

AbstractThe assembly of the Milky Way bulge is an old topic in astronomy, one now in a period of renewed and rapid development. That is due to tremendous advances in observations of bulge stars, motivating observations of both local and high-redshift galaxies, and increasingly sophisticated simulations. The dominant scenario for bulge formation is that of the Milky Way as a nearly pure disk galaxy, with the inner disk having formed a bar and buckled. This can potentially explain virtually all bulge stars with [Fe/H] ≳ −1.0, which comprise 95% of the stellar population. The evidence is the incredible success in N-body models of this type in making non-trivial, non-generic predictions, such as the rotation curve and velocity dispersion measured from radial velocities, and the spatial morphologies of the peanut/X-shape and the long bar. The classical bulge scenario, whereby the bulge formed from early dissipative collapse and mergers, remains viable for stars with [Fe/H] ≲ −1.0 and potentially a minority of the other stars. A classical bulge is expected from Λ-CDM cosmological simulations, can accentuate the properties of an existing bar in a hybrid system, and is most consistent with the bulge abundance trends such as [Mg/Fe], which are elevated relative to both the thin and thick disks. Finally, the clumpy-galaxy scenario is considered, as it is the correct description of most Milky Way precursors given observations of high-redshift galaxies. Simulations predict that these star-forming clumps will sometimes migrate to the centres of galaxies where they may form a bulge, and galaxies often include a bulge clump as well. They will possibly form a bar with properties consistent with those of the Milky Way, such as the exponential profile and metallicity gradient. Given the relative successes of these scenarios, the Milky Way bulge is plausibly of composite origin, with a classical bulge and/or inner halo numerically dominant for stars with [Fe/H] ≲ −1.0, a buckling thick disk for stars with − 1.0 ≲ [Fe/H]] ≲ -0.50 perhaps descended from the clumpy-galaxy phase, and a buckling thin disk for stars with [Fe/H] ≳ −0.50. Overlaps from these scenarios are uncertain throughout.


1996 ◽  
Vol 169 ◽  
pp. 433-434
Author(s):  
A.M. Fridman ◽  
O.V. Khoruzhii ◽  
A.E. Piskunov

Observations show that in the solar neighborhood the velocity dispersions of disk stars increase with their age. In this work we present the results of a critical analysis of the existing interpretations of the data, as well as of previous theoretical explanations of the heating phenomenon. It is shown that different relaxation mechanisms based on star-cloud collisions can result in a wide set of age–velocity dispersion relations (AVDR). Thus the observed differing power laws of the heating of the stellar component can be a consequence of the different relaxation mechanisms.


1996 ◽  
Vol 171 ◽  
pp. 407-407 ◽  
Author(s):  
D. Lutz ◽  
F. Prada

Near-infrared longslit spectra of NGC 253 obtained with IRSPEC at the ESO NTT are presented. By analysis of the 12CO 2.29μm bandhead we find that the stellar population in the central starburst region (r ∼ 150 pc) rotates more slowly than the gas, but has a velocity dispersion of 128 km/s, about twice the value found for emission lines from the gas in this region. This implies an about five times higher dynamical mass than previously derived (Rieke et al. 1980), removing the need to invoke a lower mass cutoff in the starburst initial mass function. The peak of near-infrared emission is displaced from the dynamical center.


1995 ◽  
Vol 164 ◽  
pp. 133-149
Author(s):  
Rosemary F.G. Wyse

The Milky Way Galaxy offers a unique opportunity for testing theories of galaxy formation and evolution. The study of the spatial distribution, kinematics and chemical abundances of stars in the Milky Way Galaxy allows one to address specific questions pertinent to this meeting such as (i)When was the Galaxy assembled? Is this an ongoing process? What was the merging history of the Milky Way?(ii)When did star formation occur in what is now “The Milky Way Galaxy”? Where did the star formation occur then? What was the stellar Initial Mass Function?(iii)How much dissipation of energy was there before and during the formation of the different stellar components of the Galaxy?(iv)What are the relationships among the different stellar components of the Galaxy?(v)Was angular momentum conserved during formation of the disk(s) of the Galaxy?(vi)What is the shape of the dark halo?(vii)Is there dissipative (disk) dark matter?


1994 ◽  
Vol 03 (supp01) ◽  
pp. 53-61
Author(s):  
ROSEMARY F.G. WYSE

I will first review the evidence that our Milky Way Galaxy contains a substantial amount of dark matter, and what is known about the spatial distribution of this material, from rotation curve decompositions and from analysis of the vertical force law in the solar neighborhood. All data are consistent with no significant unidentified material in the Galactic disk, requiring that the dark matter be in a spatially-extended distribution. Brown dwarfs, or sub-stellar objects, are often discussed as possible dark-matter candidates, especially in view of the implication from nucleosynthesis calculations that dark baryons exist. The somewhat discour-aging status of recent searches for brown dwarfs is reviewed, together with present understanding of the low-mass stellar initial mass function. I discuss a long-term survey of the motions and chemical abundances of Galactic stars which will provide constraints on the Galactic potential well and the history of Galaxy formation.


2017 ◽  
Vol 12 (S330) ◽  
pp. 317-320
Author(s):  
P.-E. Tremblay ◽  
N. Gentile-Fusillo ◽  
J. Cummings ◽  
S. Jordan ◽  
B. T. Gänsicke ◽  
...  

AbstractThe vast majority of stars will become white dwarfs at the end of the stellar life cycle. These remnants are precise cosmic clocks owing to their well constrained cooling rates. Gaia Data Release 2 is expected to discover hundreds of thousands of white dwarfs, which can then be observed spectroscopically with WEAVE and 4MOST. By employing spectroscopically derived atmospheric parameters combined with Gaia parallaxes, white dwarfs can constrain the stellar formation history in the early developing phases of the Milky Way, the initial mass function in the 1.5 to 8 M⊙ range, and the stellar mass loss as well as the state of planetary systems during the post main-sequence evolution.


Author(s):  
Jonathan C Bird ◽  
Sarah R Loebman ◽  
David H Weinberg ◽  
Alyson M Brooks ◽  
Thomas R Quinn ◽  
...  

Abstract Kinematic studies of disk galaxies, using individual stars in the Milky Way or statistical studies of global disk kinematics over time, provide insight into how disks form and evolve. We use a high-resolution, cosmological zoom-simulation of a Milky Way-mass disk galaxy (h277) to tie together local disk kinematics and the evolution of the disk over time. The present-day stellar age-velocity relationship (AVR) of h277 is nearly identical to that of the analogous solar-neighborhood measurement in the Milky Way. A crucial element of this success is the simulation’s dynamically cold multi-phase ISM, which allows young stars to form with a low velocity dispersion (σbirth∼6 − 8 km s−1) at late times. Older stars are born kinematically hotter (i.e., the disk settles over time in an “upside-down” formation scenario), and are subsequently heated after birth. The disk also grows “inside-out”, and many of the older stars in the present-day solar neighborhood are present because of radial mixing. We demonstrate that the evolution of σbirth in h277 can be explained by the same model used to describe the general decrease in velocity dispersion observed in disk galaxies from z ∼ 2 − 3 to the present-day, in which the disk evolves in quasi-stable equilibrium and the ISM velocity dispersion decreases over time due to a decreasing gas fraction. Thus, our results tie together local observations of the Milky Way’s AVR with observed kinematics of high z disk galaxies.


2021 ◽  
Vol 922 (2) ◽  
pp. 105
Author(s):  
Yong Yang ◽  
Jingkun Zhao ◽  
Jiajun Zhang ◽  
Xianhao Ye ◽  
Gang Zhao

Abstract We revisit the moving groups (MGs) in the solar neighborhood with a sample of 91,969 nearby stars constructed from LAMOST DR7. Using the wavelet technique and Monte Carlo simulations, five MGs together with a new candidate located at V≃−130 km s−1 are detected simultaneously in V − U 2 + 2 V 2 space. Taking into account the other known MGs, we conclude that MGs in the Galactic disk are spaced by approximately 15–25 km s−1 along V velocity. The origin of detected MGs is analyzed through the distributions of [Fe/H]−[Mg/Fe] and ages. Our results support attributing the origin to the continuous resonant mechanisms probably induced by the bar or spiral arms of the Milky Way.


Sign in / Sign up

Export Citation Format

Share Document