scholarly journals First results from XILO: XMM-Newton Investigations in the Lambda Orionis star forming region

2009 ◽  
Vol 5 (H15) ◽  
pp. 768-768
Author(s):  
B. Stelzer ◽  
D. Barrado y Navascues ◽  
N. Huelamo ◽  
M. Morales-Calderon ◽  
A. Bayo

The λ Orionis star formation region (1-6 Myr, 400 pc) is a complex of star-forming clouds surrounded by a molecular ring with ~ 5° radius which was probably formed by a supernova explosion (Dolan & Mathieu 2002). For a complete picture of star formation, believed to be determined by the supernova blast, the large-scale distribution of the pre-main sequence population in λ Ori needs to be examined. We have embarked on a multi-wavelength study (XMM-Newton/X-ray, CFHT/optical, Spitzer/IR) of selected areas within this intriguing star-forming complex that enables us to identify young stars and brown dwarfs. Our study comprises various areas within the cloud complex as shown in Fig.1. This data set is among the most extended X-ray surveys carried out with XMM-Newton in a coherent star-forming environment. The XMM-Newton observations combined with optical and IR data reveal the low-mass stellar population down to ~ 0.4 M⊙. For this mass-limited sample, our preliminary analysis confirms the anomalously low disk-fraction of the central star cluster Coll 69, the Eastern extension of its low-mass population pointing towards B 35, and the concentration of young stars in front of B 35. The analysis of the ‘on-cloud field' of B 35 (white in the figure) will show if the cloud is currently forming stars. This will be crucial for determining the star-forming history in the whole λ Ori region.

2020 ◽  
Vol 644 ◽  
pp. A97
Author(s):  
D. Colombo ◽  
S. F. Sanchez ◽  
A. D. Bolatto ◽  
V. Kalinova ◽  
A. Weiß ◽  
...  

Understanding how galaxies cease to form stars represents an outstanding challenge for galaxy evolution theories. This process of “star formation quenching” has been related to various causes, including active galactic nuclei activity, the influence of large-scale dynamics, and the environment in which galaxies live. In this paper, we present the first results from a follow-up of CALIFA survey galaxies with observations of molecular gas obtained with the APEX telescope. Together with the EDGE-CARMA observations, we collected 12CO observations that cover approximately one effective radius in 472 CALIFA galaxies. We observe that the deficit of galaxy star formation with respect to the star formation main sequence (SFMS) increases with the absence of molecular gas and with a reduced efficiency of conversion of molecular gas into stars, which is in line with the results of other integrated studies. However, by dividing the sample into galaxies dominated by star formation and galaxies quenched in their centres (as indicated by the average value of the Hα equivalent width), we find that this deficit increases sharply once a certain level of gas consumption is reached, indicating that different mechanisms drive separation from the SFMS in star-forming and quenched galaxies. Our results indicate that differences in the amount of molecular gas at a fixed stellar mass are the primary drivers for the dispersion in the SFMS, and the most likely explanation for the start of star formation quenching. However, once a galaxy is quenched, changes in star formation efficiency drive how much a retired galaxy differs in its star formation rate from star-forming ones of similar masses. In other words, once a paucity of molecular gas has significantly reduced star formation, changes in the star formation efficiency are what drives a galaxy deeper into the red cloud, hence retiring it.


2020 ◽  
Vol 500 (3) ◽  
pp. 3802-3820
Author(s):  
L M Hogarth ◽  
A Saintonge ◽  
L Cortese ◽  
T A Davis ◽  
S M Croom ◽  
...  

ABSTRACT We perform a joint analysis of high spatial resolution molecular gas and star-formation rate (SFR) maps in main-sequence star-forming galaxies experiencing galactic-scale outflows of ionized gas. Our aim is to understand the mechanism that determines which galaxies are able to launch these intense winds. We observed CO(1→0) at 1-arcsec resolution with ALMA in 16 edge-on galaxies, which also have 2-arcsec spatial-resolution optical integral field observations from the SAMI Galaxy Survey. Half the galaxies in the sample were previously identified as harbouring intense and large-scale outflows of ionized gas (‘outflow types’) and the rest serve as control galaxies. The data set is complemented by integrated CO(1→0) observations from the IRAM 30-m telescope to probe the total molecular gas reservoirs. We find that the galaxies powering outflows do not possess significantly different global gas fractions or star-formation efficiencies when compared with a control sample. However, the ALMA maps reveal that the molecular gas in the outflow-type galaxies is distributed more centrally than in the control galaxies. For our outflow-type objects, molecular gas and star-formation are largely confined within their inner effective radius (reff), whereas in the control sample, the distribution is more diffuse, extending far beyond reff. We infer that outflows in normal star-forming galaxies may be caused by dynamical mechanisms that drive molecular gas into their central regions, which can result in locally enhanced gas surface density and star-formation.


1997 ◽  
Vol 182 ◽  
pp. 537-549
Author(s):  
T. W. Hartquist ◽  
J. E. Dyson

Structures like the clumps identified in the CO maps of the Rosette Molecular Cloud and the dense cores such as those in B5, a cluster of cores and young low-mass stars, are key to considerations of star formation. Whether star formation is a self-inducing process or one that causes itself to turn off depends greatly on whether the responses of the interclump and intercore media to young stars cause the collapse of clumps or cores to be faster than their ablation. We present a naive introduction to the lengthscales over which such responses are significant, mention ways in which the responses might induce collapse, review some of the little that is known of how flows of media around clumps and cores ablate them, and then return to the issue of the lengthscales over which such responses are significant by considering the global properties of mass-loaded flows in clumpy star forming regions.


2021 ◽  
Vol 647 ◽  
pp. A133
Author(s):  
J. Álvarez-Márquez ◽  
R. Marques-Chaves ◽  
L. Colina ◽  
I. Pérez-Fournon

BOSS-EUVLG1 is the most ultraviolet (UV) and Lyα luminous galaxy to be going through a very active starburst phase detected thus far in the Universe. It is forming stars at a rate of 955 ± 118 M⊙ yr−1. We report the detection of a broad Hα component carrying 25% of the total Hα flux. The broad Hα line traces a fast and massive ionized gas outflow characterized by a total mass, log(Mout[M⊙]), of 7.94 ± 0.15, along with an outflowing velocity (Vout) of 573 ± 151 km s−1 and an outflowing mass rate (Ṁout) of 44 ± 20 M⊙ yr−1. The presence of the outflow in BOSS-EUVLG1 is also supported by the identification of blueshifted UV absorption lines in low and high ionization states. The energy involved in the Hα outflow can be explained by the ongoing star formation, without the need for an active galactic nucleus to be included in the scenario. The derived low mass-loading factor (η = 0.05 ± 0.03) indicates that, although it is massive, this phase of the outflow cannot be relevant for the quenching of the star formation, namely, the negative feedback. In addition, only a small fraction (≤15%) of the ionized outflowing material with velocities above 372 km s−1 has the capacity to escape the gravitational potential and to enrich the surrounding circumgalactic medium at distances above several tens of kpc. The ionized phase of the outflow does not carry sufficient mass or energy to play a relevant role in the evolution of the host galaxy nor in the enrichment of the intergalactic medium. As predicted by some recent simulations, other phases of the outflow could be responsible for most of the outflow energy and mass in the form of hot X-ray emitting gas. The expected emission of the extended X-ray emitting halo associated with the outflow in BOSS-EUVLG1 and similar galaxies could be detected with the future ATHENA X-ray observatory, however, there are no methods at present that would assist in their spatial resolution.


2004 ◽  
Vol 219 ◽  
pp. 228-232
Author(s):  
K. Briggs ◽  
M. Güdel ◽  
M. Audard ◽  
K. Smith ◽  
R. Mewe ◽  
...  

X-ray emission from > 100 pre-main sequence (PMS) stars in the Orion star-forming complex is studied in a 20-ks observation by XMM-Newton. No relation between the ratio of X-ray and bolometric luminosities, LX/Lbol, and rotation period or Rossby number is exhibited, though the action of a solar-like dynamo is not excluded because all stars would appear to be in the “saturated regime” of such a dynamo. Low-mass stars showing a strong U — V excess have lower median X-ray luminosity, suggesting that accretion suppresses magnetic activity.


2019 ◽  
Vol 630 ◽  
pp. A69
Author(s):  
Mika Saajasto ◽  
Jorma Harju ◽  
Mika Juvela ◽  
Liu Tie ◽  
Qizhou Zhang ◽  
...  

Context. We present molecular line and dust continuum observations of a Planck-detected cold cloud, G074.11+00.11. The cloud consists of a system of curved filaments and a central star-forming clump. The clump is associated with several infrared sources and H2O maser emission. Aims. We aim to determine the mass distribution and gas dynamics within the clump to investigate if the filamentary structure seen around the clump repeats itself on a smaller scale, and to estimate the fractions of mass contained in dense cores and filaments. The velocity distribution of pristine dense gas can be used to investigate the global dynamical state of the clump, the role of filamentary inflows, filament fragmentation, and core accretion. Methods. We used molecular line and continuum observations from single dish observatories and interferometric facilities to study the kinematics of the region. Results. The molecular line observations show that the central clump may have formed as a result of a large-scale filament collision. The central clump contains three compact cores. Assuming a distance of 2.3 kpc, based on Gaia observations and a three-dimensional extinction method of background stars, the mass of the central clump exceeds 700 M⊙, which is roughly ~25% of the total mass of the cloud. Our virial analysis suggests that the central clump and all identified substructures are collapsing. We find no evidence for small-scale filaments associated with the cores. Conclusions. Our observations indicate that the clump is fragmented into three cores with masses in the range [10, 50] M⊙ and that all three are collapsing. The presence of an H2O maser emission suggests active star formation. However, the CO lines show only weak signs of outflows. We suggest that the region is young and any processes leading to star formation have just recently begun.


Author(s):  
A J Rigby ◽  
N Peretto ◽  
R Adam ◽  
P Ade ◽  
M Anderson ◽  
...  

Abstract Determining the mechanism by which high-mass stars are formed is essential for our understanding of the energy budget and chemical evolution of galaxies. By using the New IRAM KIDs Array 2 (NIKA2) camera on the Institut de Radio Astronomie Millimétrique (IRAM) 30-m telescope, we have conducted high-sensitivity and large-scale mapping of a fraction of the Galactic plane in order to search for signatures of the transition between the high- and low-mass star-forming modes. Here, we present the first results from the Galactic Star Formation with NIKA2 (GASTON) project, a Large Programme at the IRAM 30-m telescope which is mapping ≈2 deg2 of the inner Galactic plane (GP), centred on ℓ = 23${_{.}^{\circ}}$9, b = 0${_{.}^{\circ}}$05, as well as targets in Taurus and Ophiuchus in 1.15 and 2.00 mm continuum wavebands. In this paper we present the first of the GASTON GP data taken, and present initial science results. We conduct an extraction of structures from the 1.15 mm maps using a dendrogram analysis and, by comparison to the compact source catalogues from Herschel survey data, we identify a population of 321 previously-undetected clumps. Approximately 80 per cent of these new clumps are 70 μm-quiet, and may be considered as starless candidates. We find that this new population of clumps are less massive and cooler, on average, than clumps that have already been identified. Further, by classifying the full sample of clumps based upon their infrared-bright fraction – an indicator of evolutionary stage – we find evidence for clump mass growth, supporting models of clump-fed high-mass star formation.


2020 ◽  
Vol 15 (S359) ◽  
pp. 17-21
Author(s):  
Karín Menéndez-Delmestre ◽  
Laurie Riguccini ◽  
Ezequiel Treister

AbstractThe coexistence of star formation and AGN activity has geared much attention to dusty galaxies at high redshifts, in the interest of understanding the origin of the Magorrian relation observed locally, where the mass of the stellar bulk in a galaxy appears to be tied to the mass of the underlying supermassive black hole. We exploit the combined use of far-infrared (IR) Herschel data and deep Chandra ˜160 ksec depth X-ray imaging of the COSMOS field to probe for AGN signatures in a large sample of >100 Dust-Obscured Galaxies (DOGs). Only a handful (˜20%) present individual X-ray detections pointing to the presence of significant AGN activity, while X-ray stacking analysis on the X-ray undetected DOGs points to a mix between AGN activity and star formation. Together, they are typically found on the main sequence of star-forming galaxies or below it, suggesting that they are either still undergoing significant build up of the stellar bulk or have started quenching. We find only ˜30% (6) Compton-thick AGN candidates (NH > 1024 cm–2), which is the same frequency found within other soft- and hard-X-ray selected AGN populations. This suggests that the large column densities responsible for the obscuration in Compton-thick AGNs must be nuclear and have little to do with the dust obscuration of the host galaxy. We find that DOGs identified to have an AGN share similar near-IR and mid-to-far-IR colors, independently of whether they are individually detected or not in the X-ray. The main difference between the X-ray detected and the X-ray undetected populations appears to be in their redshift distributions, with the X-ray undetected ones being typically found at larger distances. This strongly underlines the critical need for multiwavelength studies in order to obtain a more complete census of the obscured AGN population out to higher redshifts. For more details, we refer the reader to Riguccini et al. (2019).


2020 ◽  
Vol 499 (1) ◽  
pp. 668-680
Author(s):  
Alejandro González-Samaniego ◽  
Enrique Vazquez-Semadeni

ABSTRACT We use two hydrodynamical simulations (with and without photoionizing feedback) of the self-consistent evolution of molecular clouds (MCs) undergoing global hierarchical collapse (GHC), to study the effect of the feedback on the structural and kinematic properties of the gas and the stellar clusters formed in the clouds. During this early stage, the evolution of the two simulations is very similar (implying that the feedback from low-mass stars does not affect the cloud-scale evolution significantly) and the star-forming region accretes faster than it can convert gas into stars, causing the instantaneous measured star formation efficiency (SFE) to remain low even in the absence of significant feedback. Afterwards, the ionizing feedback first destroys the filamentary supply to star-forming hubs and ultimately removes the gas from it, thus first reducing the star formation (SF) and finally halting it. The ionizing feedback also affects the initial kinematics and spatial distribution of the forming stars because the gas being dispersed continues to form stars, which inherit its motion. In the non-feedback simulation, the groups remain highly compact and do not mix, while in the run with feedback, the gas dispersal causes each group to expand, and the cluster expansion thus consists of the combined expansion of the groups. Most secondary star-forming sites around the main hub are also present in the non-feedback run, implying a primordial rather than triggered nature. We do find one example of a peripheral star-forming site that appears only in the feedback run, thus having a triggered origin. However, this appears to be the exception rather than the rule, although this may be an artefact of our simplified radiative transfer scheme.


2006 ◽  
Vol 2 (S237) ◽  
pp. 397-397
Author(s):  
F. Bigiel ◽  
F. Walter ◽  
E. de Blok ◽  
E. Brinks ◽  
B. Madore

AbstractWe present first results from THINGS (The HI Nearby Galaxy Survey), which consists of high quality HI maps obtained with the VLA of 34 galaxies across a wide range of galaxy parameters (Hubble type, mass/luminosity). We compare the distribution of HI to the UV emission in our sample galaxies. In particular we present radial profiles of the HI (tracing the neutral interstellar medium) and UV (mainly tracing regions of recent star formation) in our sample galaxies. The azimuthally averaged HI profiles are compared to the predicted critical density above which organized large-scale star formation is believed to start (this threshold is based on the Toomre-Q parameter, which in turn is a measure for local gravitational instability).


Sign in / Sign up

Export Citation Format

Share Document