scholarly journals Variability of Class II methanol masers in massive star forming regions

2012 ◽  
Vol 8 (S287) ◽  
pp. 85-92
Author(s):  
Sharmila Goedhart ◽  
Mike Gaylard ◽  
Johan van der Walt

AbstractClass II methanol masers are known to be tracers of an early phase of massive star formation. The 6.7- and 12.2-GHz methanol maser transitions can show a significant amount of variability, including periodic variations. Studying maser variability can lead to important insights into conditions in the maser environment but first the maser time-series need to be characterised. The results of long-term monitoring of 8 regularly-varying sources will be presented and methods of period-search discussed.


2012 ◽  
Vol 8 (S287) ◽  
pp. 133-140
Author(s):  
S. E. Kurtz

AbstractClass I 44 GHz methanol masers are not as well-known, as common, or as bright as their more famous Class II cousins at 6.7 and 12.2 GHz. Nevertheless, the 44 GHz masers are commonly found in high-mass star forming regions. At times they appear to trace dynamically important phenomena; at other times they show no obvious link to the star formation process. Here, we summarize the major observational efforts to date, including both dedicated surveys and collateral observations. The principal results are presented, some that were expected, and others that were unexpected.



2017 ◽  
Vol 13 (S336) ◽  
pp. 243-246
Author(s):  
Ji-hyun Kang ◽  
Do-Young Byun ◽  
Kee-Tae Kim ◽  
Aran Lyo ◽  
Jongsoo Kim ◽  
...  

AbstractWe present the results of the linear polarisation observations of methanol masers at 44 and 95 GHz towards 39 massive star forming regions (Kanget al.2016). These two lines are observed simultaneously with the 21-m Korean VLBI Network (KVN) telescope in single dish mode. About 60% of the observed showed fractional polarisation of a few percents at least at one of the two transition lines. We note that the linear polarisation of the 44 GHz methanol maser is first detected in this study including single dish and interferometer observations. We find the polarisation properties of these two lines are similar as expected, since they trace similar regions. As a follow-up study, we have carried out the VLBI polarisation observations toward some 44 GHz maser targets using the KVN telescope. We present preliminary VLBI polarisation results of G10.34-0.14, which show consistent polarisation properties in multiple epoch observations.



2002 ◽  
Vol 206 ◽  
pp. 147-150
Author(s):  
Vincent Minier ◽  
Roy Booth ◽  
John Conway ◽  
Michele Pestalozzi

We summarise our recent VLBI observations of a large sample of methanol maser sources associated with high-mass star-forming regions.



2017 ◽  
Vol 13 (S336) ◽  
pp. 317-318
Author(s):  
Nichol Cunningham ◽  
Gary Fuller ◽  
Adam Avison ◽  
Shari Breen

AbstractWe present the initial results from a class I 44-GHz methanol maser follow-up survey, observed with the MOPRA telescope, towards 272 sources from the Methanol Multi-beam survey (MMB). Over half (∼60%) of the 6.7 GHz class II MMB maser sources are associated with a class I 44-GHz methanol maser at a greater than 5σ detection level. We find that class II MMB masers sources with an associated class I methanol maser have stronger peak fluxes compared to regions without an associated class I maser. Furthermore, as part of the MOPRA follow-up observations we simultaneously observed SiO emission which is a known tracer of shocks and outflows in massive star forming regions. The presence of SiO emission, and potentially outflows, is found to be strongly associated with the detection of class I maser emission in these regions.



2017 ◽  
Vol 13 (S336) ◽  
pp. 323-324
Author(s):  
Sonu Tabitha Paulson ◽  
Jagadheep D. Pandian

AbstractMethanol masers at 6.7 GHz are the brightest of class II methanol masers and have been found exclusively towards massive star forming regions. These masers can thus be used as a unique tool to probe the early phases of massive star formation. We present here the SED studies of 284 methanol masers chosen from the MMB catalogue, which falls in the Hi-GAL range (|l| ≤ 60°, |b| ≤ 1°). The masers are studied using the ATLASGAL, MIPSGAL and Hi-GAL data at wavelengths ranging from 24−870 micrometers. A single grey body component fit was used to model the cold dust emission whereas the emission from the warm dust is modelled by a black body. The clump properties such as isothermal mass, FIR luminosity and MIR luminosity were obtained using the best fit parameters of the SED fits. We discuss the physical properties of the sources and explore the evolutionary stages of the sources having 6.7 GHz maser emission in the timeline of high mass star formation.



2007 ◽  
Vol 3 (S242) ◽  
pp. 234-235
Author(s):  
T. Umemoto ◽  
N. Mochizuki ◽  
K. M. Shibata ◽  
D.-G. Roh ◽  
H.-S. Chung

AbstractWe present the results of a mm wavelength methanol maser survey towards massive star forming regions. We have carried out Class II methanol maser observations at 86.6 GHz, 86.9 GHz and 107.0 GHz, simultaneously, using the Nobeyama 45 m telescope. We selected 108 6.7 GHz methanol maser sources with declinations above −25 degrees and fluxes above 20 Jy. The detection limit of maser observations was ~3 Jy. Of the 93 sources surveyed so far, we detected methanol emission in 25 sources (27%) and “maser” emission in nine sources (10%), of which thre “maser” sources are new detections. The detection rate for maser emission is about half that of a survey of the southern sky (Caswell et al. 2000). There is a correlation between the maser flux of 107 GHz and 6.7 GHz/12 GHz emission, but no correlation with the “thermal” (non maser) emission. From results of other molecular line observations, we found that the sources with methanol emission show higher gas temperatures and twice the detection rate of SiO emission. This may suggest that dust evaporation and destruction by shock are responsible for the high abundance of methanol molecules, one of the required physical conditions for maser emission.



Ocean Science ◽  
2013 ◽  
Vol 9 (2) ◽  
pp. 301-324 ◽  
Author(s):  
K. Schroeder ◽  
C. Millot ◽  
L. Bengara ◽  
S. Ben Ismail ◽  
M. Bensi ◽  
...  

Abstract. The long-term monitoring of basic hydrological parameters (temperature and salinity), collected as time series with adequate temporal resolution (i.e. with a sampling interval allowing the resolution of all important timescales) in key places of the Mediterranean Sea (straits and channels, zones of dense water formation, deep parts of the basins), constitute a priority in the context of global changes. This led CIESM (The Mediterranean Science Commission) to support, since 2002, the HYDROCHANGES programme (http//www.ciesm.org/marine/programs/hydrochanges.htm), a network of autonomous conductivity, temperature, and depth (CTD) sensors, deployed on mainly short and easily manageable subsurface moorings, within the core of a certain water mass. The HYDROCHANGES strategy is twofold and develops on different scales. To get information about long-term changes of hydrological characteristics, long time series are needed. But before these series are long enough they allow the detection of links between them at shorter timescales that may provide extremely valuable information about the functioning of the Mediterranean Sea. The aim of this paper is to present the history of the programme and the current set-up of the network (monitored sites, involved groups) as well as to provide for the first time an overview of all the time series collected under the HYDROCHANGES umbrella, discussing the results obtained thanks to the programme.



2020 ◽  
Vol 493 (1) ◽  
pp. 199-233 ◽  
Author(s):  
C S Ogbodo ◽  
J A Green ◽  
J R Dawson ◽  
S L Breen ◽  
S A Mao ◽  
...  

ABSTRACT From targeted observations of ground-state hydroxyl (OH) masers towards 702 Methanol Multibeam survey 6.7-GHz methanol masers, in the Galactic longitude range from 186° through the Galactic Centre to 20°, made as part of the ‘MAGMO’ (Mapping the Galactic Magnetic field through OH masers) project, we present the physical and polarization properties of the 1720-MHz OH maser transition, including the identification of Zeeman pairs. We present 10 new and 23 previously catalogued 1720-MHz OH maser sources detected towards star-forming regions (SFRs). In addition, we also detected 16 1720-MHz OH masers associated with supernova remnants and two sites of diffuse OH emission. Towards the 33 star formation masers, we identify 44 Zeeman pairs, implying magnetic field strengths ranging from −11.4 to +13.2 mG, and a median magnetic field strength of |BLOS| ∼ 6 mG. With limited statistics, we present the in situ magnetic field orientation of the masers and the Galactic magnetic field distribution revealed by the 1720-MHz transition. We also examine the association statistics of 1720-MHz OH SFR masers with other ground-state OH masers, excited-state OH masers, class I and class II methanol masers, and water masers, and compare maser positions with mid-infrared images of the parent SFRs. Of the 33 1720-MHz star formation masers, 10 are offset from their central exciting sources, and appear to be associated with outflow activity.



2010 ◽  
Vol 517 ◽  
pp. A56 ◽  
Author(s):  
F. Fontani ◽  
R. Cesaroni ◽  
R. S. Furuya


Sign in / Sign up

Export Citation Format

Share Document