scholarly journals Class I Methanol Masers in the Galactic Center

2012 ◽  
Vol 8 (S287) ◽  
pp. 449-454
Author(s):  
Loránt O. Sjouwerman ◽  
Ylva M. Pihlström

AbstractWe report on 36 and 44 GHz Class I methanol (CH3OH) maser emission in the Sagittarius A (Sgr A) region with the Expanded Very Large Array (EVLA). At least three different maser transitions tracing shocked regions in the cm-wave radio regime can be found in Sgr A. 44 GHz masers correlate with the positions and velocities of 36 GHz CH3OH masers, but the methanol masers correlate less with 1720 MHz OH masers. Our results agree with theoretical predictions that the densities and temperatures conducive for 1720 MHz OH masers may also produce 36 and 44 GHz CH3OH maser emission. However, many 44 GHz masers do not overlap with 36 GHz methanol masers, suggesting that 44 GHz masers also arise in regions too hot and too dense for 36 GHz masers to form. This agrees with the non-detection of 1720 MHz OH masers in the same area, which are thought to be excited under cooler or denser conditions. We speculate that the geometry of the bright 36 GHz masers in Sgr A East outlines the location of a SNR shock front.

2013 ◽  
Vol 9 (S303) ◽  
pp. 147-149
Author(s):  
L. O. Sjouwerman ◽  
Y. M. Pihlström

AbstractWe report on the detection of 36 and 44 GHz Class I methanol (CH3OH) maser emission in the Sagittarius A (Sgr A) complex with the Karl G. Jansky Very Large Array (VLA). These VLA observations show that the Sgr A complex harbors at least three different maser tracers of shocked regions in the radio regime. The 44 GHz masers correlate with the positions and velocities of previously detected 36 GHz CH3OH masers, but less with 1720 MHz OH masers. Our detections agree with theoretical predictions that the densities and temperatures conducive for 1720 MHz OH masers may also produce 36 and 44 GHz CH3OH maser emission. However, many 44 GHz masers do not overlap with 36 GHz methanol masers, suggesting that 44 GHz masers also arise in regions too hot and too dense for 36 GHz masers to form. This agrees with the non-detection of 1720 MHz OH masers in the same area, which are thought to be excited under even cooler and less dense conditions. We speculate that the geometry of the 36 GHz masers outlines the current location of a shock front.


2010 ◽  
Vol 710 (2) ◽  
pp. L111-L114 ◽  
Author(s):  
Loránt O. Sjouwerman ◽  
Ylva M. Pihlström ◽  
Vincent L. Fish

2013 ◽  
Vol 9 (S303) ◽  
pp. 156-158
Author(s):  
Y. M. Pihlström ◽  
B. C. McEwen ◽  
L. O. Sjouwerman

AbstractMethanol masers can be used to constrain densities and estimate kinematical distances to supernova remnants (SNRs), important parameters in cosmic ray acceleration models. With the goal of testing those models both for SNRs inside and outside the Galactic center (GC) region, we have used the Very Large Array to search for 36 GHz and 44 GHz methanol lines in Galactic SNRs. We report on the overall results of the maser search, and in particular the results of the GC SNR G1.4–0.1 in which more than 40 masers were found. They may be due to interactions between the SNR and at least two separate molecular clouds. Methanol masers were also detected in W28 and in Sgr A East.


2017 ◽  
Vol 13 (S336) ◽  
pp. 105-108
Author(s):  
Tiege P. McCarthy ◽  
Simon P. Ellingsen ◽  
Xi Chen ◽  
Shari L. Breen ◽  
Maxim A. Voronkov ◽  
...  

AbstractWe have detected maser emission from the 36.2 GHz (4−1 → 30E) methanol transition towards NGC 4945. This emission has been observed in two separate epochs and is approximately five orders of magnitude more luminous than typical emission from this transition within our Galaxy. NGC 4945 is only the fourth extragalactic source observed hosting class I methanol maser emission. Extragalactic class I methanol masers do not appear to be simply highly-luminous variants of their galactic counterparts and instead appear to trace large-scale regions where low-velocity shocks are present in molecular gas.


2013 ◽  
Vol 9 (S303) ◽  
pp. 464-466
Author(s):  
M. Rickert ◽  
F. Yusef-Zadeh ◽  
C. Brogan

AbstractWe analyze a high resolution (114″ × 60″) 74 MHz image of the Galactic center taken with the Very Large Array (VLA). We have identified several absorption and emission features in this region, and we discuss preliminary results of two Galactic center sources: the Sgr D complex (G1.1–0.1) and the Galactic center lobe (GCL).The 74 MHz image displays the thermal and nonthermal components of Sgr D and we argue the Sgr D supernova remnant (SNR) is consistent with an interaction with a nearby molecular cloud and the location of the Sgr D Hii region on the near side of the Galactic center. The image also suggests that the emission from the eastern side of the GCL contains a mixture of both thermal and nonthermal sources, whereas the western side is primarily thermal.


2020 ◽  
Vol 72 (3) ◽  
Author(s):  
Masato Tsuboi ◽  
Yoshimi Kitamura ◽  
Takahiro Tsutsumi ◽  
Ryosuke Miyawaki ◽  
Makoto Miyoshi ◽  
...  

Abstract The Galactic Center IRS 13E cluster is a very intriguing infrared object located at ${\sim } 0.13$ pc from Sagittarius A$^\ast$ (Sgr A$^\ast$) in projection distance. There are arguments both for and against the hypothesis that a dark mass like an intermediate mass black hole (IMBH) exists in the cluster. We recently detected the rotating ionized gas ring around IRS 13E3, which belongs to the cluster, in the H30$\alpha$ recombination line using ALMA. The enclosed mass is derived to be $M_{\mathrm{encl.}}\simeq 2\times 10^{4}\, M_\odot$, which agrees with an IMBH and is barely less than the astrometric upper limit mass of an IMBH around Sgr A$^\ast$. Because the limit mass depends on the true three-dimensional (3D) distance from Sgr A$^\ast$, it is very important to determine it observationally. However, the 3D distance is indefinite because it is hard to determine the line-of-sight (LOS) distance by usual methods. We attempt here to estimate the LOS distance from spectroscopic information. The CH$_3$OH molecule is easily destroyed by the cosmic rays around Sgr A$^{\ast }$. However, we detected a highly excited CH$_3$OH emission line in the ionized gas stream associated with IRS 13E3. This indicates that IRS 13E3 is located at $r\gtrsim 0.4$ pc from Sgr A$^{\ast }$.


2017 ◽  
Vol 13 (S336) ◽  
pp. 311-312
Author(s):  
Luca Olmi ◽  
Esteban D. Araya ◽  
Jason Armstrong

AbstractIn 2014 we conducted a survey for 6.7 GHz methanol masers with the Arecibo Telescope toward far infrared sources selected from the Hi-GAL catalog of massive cores. We found a number of sources with weak 6.7 GHz methanol masers, possibly indicating regions in early stages of star formation. Here we describe the results of follow-up observations that were conducted with the Very Large Array in New Mexico to characterize this new population of “weak” 6.7 GHz methanol masers.


Sign in / Sign up

Export Citation Format

Share Document