scholarly journals EVLA imaging of the water masers in the massive protostellar cluster NGC6334I

2012 ◽  
Vol 8 (S287) ◽  
pp. 502-503
Author(s):  
Todd R. Hunter ◽  
Crystal L. Brogan

AbstractWe have used the recently-upgraded Karl G. Jansky Very Large Array (VLA) in A-configuration to observe the water masers in the massive protostellar cluster NGC6334I with broad bandwidth and high spectral resolution. Four groups of maser spots are found. The two groups with the broadest velocity span (40 km/s) are towards the UCHII region and the hot core SMA1. The spatial kinematics of the SMA1 masers are consistent in sense and orientation with the large-scale CO outflow and appear to trace the base of the outflow from a protostar at the dust peak of SMA1. Additional masers at the southern end of SMA1 provide evidence for a second protostar. The highest intensity maser lies about 2″ north of SMA1. Interestingly, no water masers are seen on the equally impressive hot core SMA2. Finally, we have detected maser emission toward the enigmatic source SMA4, which shows no millimeter molecular lines despite having strong, compact submillimeter continuum and may trace another protostar.

2012 ◽  
Vol 8 (S287) ◽  
pp. 258-259
Author(s):  
Yolanda Gómez ◽  
Daniel Tafoya ◽  
Olga Suárez ◽  
Jose F. Gómez ◽  
Luis F. Miranda ◽  
...  

AbstractIt has been suggested that the presence of disks or tori around the central stars of pre Planetary Nebulae and Planetary Nebulae is related to the collimation of the jet that are frequently observed in these sources. These disks or tori can be traced by the maser emission of some molecules such as water. In this work we present Very Large Array (VLA) observations of the water maser emission at 22 GHz toward the PN IRAS 18061–2505, for which the masers appear located on one side of the central star. For comparison with the observations, we present a simple kinematical model of a disk rotating and expanding around the central star. The model matches qualitatively the observations. However, since the masers appear only on one side of the disk, these results are not conclusive.


2007 ◽  
Vol 3 (S242) ◽  
pp. 489-493
Author(s):  
Nimesh A. Patel ◽  
Salvador Curiel ◽  
Qizhou Zhang ◽  
T. K. Sridharan ◽  
Paul T. P. Ho ◽  
...  

AbstractUsing the Submillimeter Array (SMA) we have imaged for the first time the 321.226 GHz, 1029 − 936 ortho-H2O maser emission. This is also the first detection of this line in the Cepheus A high-mass star-forming region. The 22.235 GHz, 616 – 523 water masers were also observed with the Very Large Array 43 days following the SMA observations. Three of the nine detected submillimeter maser spots are associated with the centimeter masers spatially as well as kinematically, while there are 36 22 GHz maser spots without corresponding submillimeter masers. In the HW2 source, both the 321 GHz and 22 GHz masers occur within the region of ~1″ which includes the disk-jet system, but the position angles of the roughly linear structures traced by the masers indicate that the 321 GHz masers are along the jet while the 22 GHz masers are perpendicular to it. We interpret the submillimeter masers in Cepheus A to be tracing significantly hotter regions (600~2000 K) than the centimeter masers.


2013 ◽  
Vol 9 (S303) ◽  
pp. 147-149
Author(s):  
L. O. Sjouwerman ◽  
Y. M. Pihlström

AbstractWe report on the detection of 36 and 44 GHz Class I methanol (CH3OH) maser emission in the Sagittarius A (Sgr A) complex with the Karl G. Jansky Very Large Array (VLA). These VLA observations show that the Sgr A complex harbors at least three different maser tracers of shocked regions in the radio regime. The 44 GHz masers correlate with the positions and velocities of previously detected 36 GHz CH3OH masers, but less with 1720 MHz OH masers. Our detections agree with theoretical predictions that the densities and temperatures conducive for 1720 MHz OH masers may also produce 36 and 44 GHz CH3OH maser emission. However, many 44 GHz masers do not overlap with 36 GHz methanol masers, suggesting that 44 GHz masers also arise in regions too hot and too dense for 36 GHz masers to form. This agrees with the non-detection of 1720 MHz OH masers in the same area, which are thought to be excited under even cooler and less dense conditions. We speculate that the geometry of the 36 GHz masers outlines the current location of a shock front.


2020 ◽  
Vol 497 (2) ◽  
pp. 1675-1683
Author(s):  
Sara C Beck ◽  
John Lacy ◽  
Jean Turner ◽  
Hauyu Baobab Liu ◽  
Thomas Greathouse ◽  
...  

ABSTRACT The youngest, closest, and most compact embedded massive star cluster known excites the supernebula in the nearby dwarf galaxy NGC 5253. It is a crucial target and test case for studying the birth and evolution of the most massive star clusters. We present observations of the ionized gas in this source with high spatial and spectral resolution. The data include continuum images of free–free emission with ≈0.15 arcsec resolution made with the Karl G. Jansky Very Large Array (JVLA) at 15, 22, and 33 GHz, and a full data cube of the [S iv] 10.5 μm  fine-structure emission line with ≈4.5 km s−1 velocity resolution and 0.3 arcsec beam, obtained with the Texas Echelon Cross Echelle Spectrograph (TEXES) on Gemini North. We find that (1) the ionized gas extends out from the cluster in arms or jets, and (2) the ionized gas comprises two components offset both spatially and in velocity. We discuss mechanisms that may have created the observed velocity field; possibilities include large-scale jets or a subcluster falling on to the main source.


2012 ◽  
Vol 8 (S287) ◽  
pp. 449-454
Author(s):  
Loránt O. Sjouwerman ◽  
Ylva M. Pihlström

AbstractWe report on 36 and 44 GHz Class I methanol (CH3OH) maser emission in the Sagittarius A (Sgr A) region with the Expanded Very Large Array (EVLA). At least three different maser transitions tracing shocked regions in the cm-wave radio regime can be found in Sgr A. 44 GHz masers correlate with the positions and velocities of 36 GHz CH3OH masers, but the methanol masers correlate less with 1720 MHz OH masers. Our results agree with theoretical predictions that the densities and temperatures conducive for 1720 MHz OH masers may also produce 36 and 44 GHz CH3OH maser emission. However, many 44 GHz masers do not overlap with 36 GHz methanol masers, suggesting that 44 GHz masers also arise in regions too hot and too dense for 36 GHz masers to form. This agrees with the non-detection of 1720 MHz OH masers in the same area, which are thought to be excited under cooler or denser conditions. We speculate that the geometry of the bright 36 GHz masers in Sgr A East outlines the location of a SNR shock front.


2005 ◽  
Vol 13 ◽  
pp. 799-801
Author(s):  
Theodore R. Gull ◽  

AbstractWe have used the high spatial and high spectral resolution of the Space Telescope Imaging Spectrograph (STIS) to study Eta Carinae and the Homunculus. Since the last minimum in 1998.0, CCD spectral modes have followed changes in the Eta Carinae, and large-scale changes in the Homunculus. Since 2001.7, MAMA echelle-mode observations have followed changes in the Eta Carinae and the very nearby ejecta through the 2003.5 minimum. Very significant changes in the star and nebular occur as the X-Ray drop occurs in the minimum.


1990 ◽  
Vol 142 ◽  
pp. 523-524
Author(s):  
S. M. White ◽  
M. R. Kundu ◽  
N. Gopalswamy ◽  
E. J. Schmahl

During September 1988 (International Solar Month) we observed the Sun with the Very Large Array on 4 days in the period Sep. 11-17. The VLA was in its most compact configuration, which is ideal for studying large-scale coronal structures. Here we summarize some preliminary results of the observations at 0.333 and 1.5 GHz. Despite the presence of numerous active regions the Sun was actually very quiet, with no flares during our observing, and this allowed us to make high-dynamic-range maps.


2017 ◽  
Vol 13 (S336) ◽  
pp. 49-52
Author(s):  
M. J Claussen ◽  
M. R. Morris ◽  
Y. M. Pihlström ◽  
L. O. Sjouwerman ◽  

AbstractThe Bulge Asymmetries and Dynamical Evolution (BAaDE) project aims to map the positions and velocities of up to ~20,000 late-type stars with SiO maser emission along the full Galactic plane, with a large concentration in the Galactic Bulge and inner Galaxy. Both J = 1 → 0 and J = 2 → 1 transitions using the Very Large Array (VLA) and the Atacama Large Millimeter Array (ALMA) are being observed. In the VLA observing setup, in addition to the 28SiO, v = 1 and v = 2J = 1 → 0 maser transitions, the bandwidth was wide enough to include the J = 1 → 0 transitions of the rare isotopologues of the SiO molecule in both the ground and vibrationally excited states: 29SiO, v = 0, 30SiO, v = 0, 29SiO, v = 1, and 29SiO, v = 2. Approximately 10% of the initial ~3500 targets of the project show maser emission from at least one of these lines. Some of these stars (with isotopic maser emission) show high radial velocities which implies that they are indeed in the Galactic Bulge or inner Galaxy (i.e. not foreground objects). We present line profiles, refined detection statistics, and the implications of the detection of the isotopic maser emission on pumping schemes that have been previously presented.


1994 ◽  
Vol 158 ◽  
pp. 334-336
Author(s):  
V. Migenes ◽  
J.A. Yates ◽  
R.J. Cohen ◽  
M.C. Shepherd ◽  
P.F. Bowers

At present there are several radio interferometer arrays ranging from the low-resolution (0.1–1″) high-sensitivity arrays such as the Very Large Array (VLA) to the high-resolution (0.0005–0.1″) low-sensitivity arrays such as MERLIN (though MERLIN, in the UK, is really in between this broad category), EVN, VLBA and SHEVE. Combining high sensitvity and high resolution is prohibitively expensive, because to have the u–v sampling of small arrays would require more and larger antenna elements. Hence high- resolution arrays have poor u–v coverage, decreasing the sensitivity of the instrument. This has a serious effect on spectral-line work, where sensitivity has already been sacrificed in the pursuit of spectral resolution.


Sign in / Sign up

Export Citation Format

Share Document