scholarly journals What makes a galaxy radio-loud?

2011 ◽  
Vol 7 (S284) ◽  
pp. 221-223
Author(s):  
R. A. Ortega-Minakata ◽  
J. P. Torres-Papaqui ◽  
H. Andernach ◽  
R. Coziol ◽  
J. M. Islas-Islas ◽  
...  

AbstractWe compare the Spectral Energy Distribution (SED) of radio-loud and radio-quiet AGNs in three different samples observed with SDSS: radio-loud AGNs (RLAGNs), Low Luminosity AGNs (LLAGNs) and AGNs in isolated galaxies (IG-AGNs). All these galaxies have similar optical spectral characteristics. The median SED of the RLAGNs is consistent with the characteristic SED of quasars, while that of the LLAGNs and IG-AGNs are consistent with the SED of LINERs, with a lower luminosity in the IG-AGNs than in the LLAGNs. We infer the masses of the black holes (BHs) from the bulge masses. These increase from the IG-AGNs to the LLAGNs and are highest for the RLAGNs. All these AGNs show accretion rates near or slightly below 10% of the Eddington limit, the differences in luminosity being solely due to different BH masses. Our results suggests there are two types of AGNs, radio quiet and radio loud, differing only by the mass of their bulges or BHs.

2010 ◽  
Vol 6 (S275) ◽  
pp. 82-86 ◽  
Author(s):  
Dipankar Maitra ◽  
Andrew Cantrell ◽  
Sera Markoff ◽  
Heino Falcke ◽  
Jon Miller ◽  
...  

AbstractWe present results of recent observations and theoretical modeling of data from black holes accreting at very low luminosities (L/LEdd ≲ 10−8). We discuss our newly developed time-dependent model for episodic ejection of relativistic plasma within a jet framework, and a successful application of this model to describe the origin of radio flares seen in Sgr A*, the Galactic center black hole. Both the observed time lags and size-frequency relationships are reproduced well by the model. We also discuss results from new Spitzer data of the stellar black hole X-ray binary system A0620–00. Complemented by long term SMARTS monitoring, these observations indicate that once the contribution from the accretion disk and the donor star are properly included, the residual mid-IR spectral energy distribution of A0620–00 is quite flat and consistent with a non-thermal origin. The results above suggest that a significant fraction of the observed spectral energy distribution originating near black holes accreting at low luminosities could result from a mildly relativistic outflow. The fact that these outflows are seen in both stellar-mass black holes as well as in supermassive black holes at the heart of AGNs strengthens our expectation that accretion and jet physics scales with mass.


2012 ◽  
Vol 8 (S290) ◽  
pp. 355-356
Author(s):  
George Younes ◽  
Delphine Porquet

AbstractWe study the multiwavelength properties of an optically selected sample of Low Ionization Nuclear Emission-line Regions (LINERs), in an attempt to determine the accretion mechanism powering their central engine. We show how their X-ray spectral characteristics, and their spectral energy distribution compare to luminous AGN, and briefly discuss their connection to their less massive counter-parts galactic black-hole X-ray binaries.


2004 ◽  
Vol 191 ◽  
pp. 200-201
Author(s):  
M. Osorio ◽  
P. D’Alessio ◽  
J. Muzerolle ◽  
N. Calvet ◽  
L. Hartmann

AbstractWe model the L1551 IRS5 source as a system containing two protostars, each surrounded by a circumstellar disk, both encircled by a circumbinary disk, and all disks surrounded by an extended infalling flattened envelope With this composite model, we can calculate self-consistently the spectral energy distribution of the source the shape of the ice and silicate features, and the spatial intensity distributions of the envelope and disks. We compare our model results with the observations, determining the physical parameters of the disks and the envelope. We find that flattened envelope collapse models are required in order to explain the observations and that the infall rate of the envelope is much larger than the accretion rates of the binary disks.


2019 ◽  
Vol 489 (1) ◽  
pp. 524-533 ◽  
Author(s):  
Aya Kubota ◽  
Chris Done

ABSTRACT We develop a broad-band spectral model, agnslim, to describe super-Eddington black hole accretion disc spectra. This is based on the slim disc emissivity, where radial advection keeps the surface luminosity at the local Eddington limit, resulting in L(r) ∝ r−2 rather than the r−3 expected from the Novikov-Thorne (standard, sub-Eddington) disc emissivity. Wind losses should also be important but these are expected to produce a similar radiative emissivity. We assume that the flow is radially stratified, with an outer standard disc, an inner hot Comptonizing region and an intermediate warm Comptonizing region to produce the soft X-ray excess. This gives the model enough flexibility to fit the observed data, but with the additional requirement of energy conservation to give physical constraints. We use this to fit the broad-band spectrum of one of the most extreme Active Galactic Nuclei, the Narrow Line Seyfert 1 RX J0439.6−5311, which has a black hole mass of $(6\sim 9)\times 10^6\, \mathrm{M}_\odot$ as derived from the H β line width. This cannot be fit with the standard disc emissivity at this mass, as even zero spin models overproduce the observed luminosity. Instead, we show that the spectrum is well reproduced by the slim disc model, giving mass accretion rates around (5 ∼ 10) × Eddington limit. There is no constraint on black hole spin as the efficiency is reduced by advection. Such extreme accretion rates should be characteristic of the first Quasars, and we demonstrate this by fitting to the spectrum of a recently discovered super-Eddington Quasar, PSO J006 + 39, at z = 6.6.


Author(s):  
M. A. Al-WARDAT ◽  
A. TAANI ◽  
M. ASPLUND

We presented a method useful for estimating parallaxes of visually close binary stars (VCBS). The method depends on atmospheric modeling of the components of the VCBS. We construct model atmospheres by using a grid of Kurucz solar metalicity blanketed models1, which can be applied to calculate the synthetic spectral energy distribution for each component of the binary separately. In addition to study the entire system. However, the entire observational spectral energy distribution of the system was used as a reference for the comparison with the synthetic ones. We choose Hip4809 system to investigate the method, and we also study its physical and geometrical parameters. The new parallax of the system was estimated as π = 40.32 ± 5.00 mas, which disagrees with the Hipparcos parallax measurement (13.94 ± 0.90 mas). Furthermore the model atmosphere parameters of the components of the system were derived as: [Formula: see text], [Formula: see text], log ga = 4.50 ± 0.13, log gb = 4.50 ± 0.13, Ra = 0.94 ± 0.12R⊙, Rb = 0.93 ± 0.12R⊙, Depending on the derived parameters, the masses of the system's components were estimated as 1.03 ± 0.02M⊙ and 1.01 ± 0.02M⊙ for the primary and secondary components respectively, and their spectral types were concluded as G6V for both of them.


2011 ◽  
Vol 20 (3) ◽  
Author(s):  
S. Simić ◽  
L. Č. Popović ◽  
P. Jovanović

AbstractHere we consider the influence of microlensing on the spectrum of a lensed object with the angular size 5 μas accepting that the composite emission of this object originates from three different regions arranged around its center. We assume that the lensed object has three concentric regions with a black-body emission; the temperatures of these regions are 10 000 K, 7500 K and 5000 K. We investigate how the integral spectral energy distribution (SED) of such stratified source changes due to microlensing by a group of solarmass stars. We find that the SED and flux ratios in the photometric B, V and R passbands show considerable changes during a microlens event. This indicates that the flux anomaly observed in some lensed quasars may be caused by microlensing of a stratified object.


Sign in / Sign up

Export Citation Format

Share Document