scholarly journals ∊ Aur in eclipse: Post-AGB primary and disk-shaped secondary

2011 ◽  
Vol 7 (S283) ◽  
pp. 454-455
Author(s):  
Chinnathambi Muthumariappan ◽  
Mudumba Parthasarathy ◽  
Kanniah Jayakumar ◽  
Manickam Appakutty

AbstractWe present physical and chemcal properties of the disk in the eclipsing binary system ∊ Aur by solving 2D radiative transfer problem. We also present preliminary results of our high resolution spectroscopic monitoring of K I, Na, and Hα line profiles variation during the totality phase of the recent eclipse of ∊ Aur.

2002 ◽  
Vol 185 ◽  
pp. 102-103
Author(s):  
E. Rodríguez ◽  
V. Costa ◽  
M.J. López-González ◽  
J.M. García ◽  
S.L. Kim ◽  
...  

AbstractRZ Cas is an Algol-type eclipsing binary system where the primary component was recently discovered as a δ Set pulsator. A three-continent multisite photometric campaign was carried out during 1999. Preliminary results are reported here indicating a semi-detached system where the secondary fills its Roche lobe. The light curves also suggest a hot spot on the surface of the primary component as a consequence of the impact of the mass stream from the secondary. The pulsational behaviour can be well described with only one frequency.


1980 ◽  
Vol 87 ◽  
pp. 411-416
Author(s):  
W.H. Mccutcheon ◽  
R. L. Dickman ◽  
W.L.H. Shuter ◽  
R. S. Roger

Since 13C is believed to be produced by non-equilibrium CNO processing in stellar evolution (Truran 1977), measurements of the carbon ratio Rc ≡ [12C] / [13C] in the interstellar medium may provide important information on nucleo-synthesis. Commonly, the ratio (N13/N18)LTE ≡ [13CO/C18O]LTE is measured and from this RLTE ≡ [12CO/13CO]LTE is deduced and these values are often identified with Rc. However, this line of reasoning can be misleading for two reasons (Dickman et al. 1979):(1) The difficulty of determining accurate column densities, [13C16O] and [12C18O], because of the complexity of the radiative transfer problem;(2) The possible role of fractionation, whereby RCO ≡ [12CO] / [13CO] does not necessarily reflect the initial atomic abundance ratio RC (Watson et al. 1976, Langer 1977, Liszt 1978).


2019 ◽  
Vol 622 ◽  
pp. A162 ◽  
Author(s):  
Gioele Janett

Observations and magnetohydrodynamic simulations of solar and stellar atmospheres reveal an intermittent behavior or steep gradients in physical parameters, such as magnetic field, temperature, and bulk velocities. The numerical solution of the stationary radiative transfer equation is particularly challenging in such situations, because standard numerical methods may perform very inefficiently in the absence of local smoothness. However, a rigorous investigation of the numerical treatment of the radiative transfer equation in discontinuous media is still lacking. The aim of this work is to expose the limitations of standard convergence analyses for this problem and to identify the relevant issues. Moreover, specific numerical tests are performed. These show that discontinuities in the atmospheric physical parameters effectively induce first-order discontinuities in the radiative transfer equation, reducing the accuracy of the solution and thwarting high-order convergence. In addition, a survey of the existing numerical schemes for discontinuous ordinary differential systems and interpolation techniques for discontinuous discrete data is given, evaluating their applicability to the radiative transfer problem.


PAMM ◽  
2007 ◽  
Vol 7 (1) ◽  
pp. 1022805-1022806 ◽  
Author(s):  
P. B. Vasconcelos ◽  
O. A. Marques

2004 ◽  
Vol 417 (3) ◽  
pp. 793-805 ◽  
Author(s):  
I. Pascucci ◽  
S. Wolf ◽  
J. Steinacker ◽  
C. P. Dullemond ◽  
Th. Henning ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document