scholarly journals Neutron Star Kicks Affected by Standing Accretion Shock Instability for Core-Collapse Supernovae

2011 ◽  
Vol 7 (S279) ◽  
pp. 337-338
Author(s):  
Wakana Iwakami Nakano ◽  
Kei Kotake ◽  
Naofumi Ohnishi ◽  
Shoichi Yamada ◽  
Keisuke Sawada

AbstractWe investigate a proto-neutron star kick velocity estimated from kinetic momentum of a flow around the proto-neutron star after the standing accretion shock instability grows. In this study, ten different types of random perturbations are imposed on the initial flow for each neutrino luminosity. We found that the kick velocities of proto-neutron star are widely distributed from 40 km s−1 to 180 km s−1 when the shock wave reaches 2000 km away from the center of the star. The average value of kick velocity is 115 km s−1, whose value is smaller than the observational ones. The kick velocities do not depend on the neutrino luminosity.

2011 ◽  
Vol 7 (S279) ◽  
pp. 134-137
Author(s):  
Thierry Foglizzo ◽  
Frédéric Masset ◽  
Jérôme Guilet ◽  
Gilles Durand

AbstractMassive stars end their life with the gravitational collapse of their core and the formation of a neutron star. Their explosion as a supernova depends on the revival of a spherical accretion shock, located in the inner 200km and stalled during a few hundred milliseconds. Numerical simulations suggest that the large scale asymmetry of the neutrino-driven explosion is induced by a hydrodynamical instability named SASI. Its non radial character is able to influence the kick and the spin of the resulting neutron star. The SWASI experiment is a simple shallow water analog of SASI, where the role of acoustic waves and shocks is played by surface waves and hydraulic jumps. Distances in the experiment are scaled down by a factor one million, and time is slower by a factor one hundred. This experiment is designed to illustrate the asymmetric nature of core-collapse supernova.


2020 ◽  
Vol 492 (4) ◽  
pp. 5764-5779 ◽  
Author(s):  
Hiroki Nagakura ◽  
Adam Burrows ◽  
David Radice ◽  
David Vartanyan

ABSTRACT This paper presents the first systematic study of proto-neutron star (PNS) convection in three dimensions (3D) based on our latest numerical fornax models of core-collapse supernova (CCSN). We confirm that PNS convection commonly occurs, and then quantify the basic physical characteristics of the convection. By virtue of the large number of long-term models, the diversity of PNS convective behaviour emerges. We find that the vigour of PNS convection is not correlated with CCSN dynamics at large radii, but rather with the mass of PNS − heavier masses are associated with stronger PNS convection. We find that PNS convection boosts the luminosities of νμ, ντ, $\bar{\nu }_{\mu }$, and $\bar{\nu }_{\tau }$ neutrinos, while the impact on other species is complex due to a competition of factors. Finally, we assess the consequent impact on CCSN dynamics and the potential for PNS convection to generate pulsar magnetic fields.


2022 ◽  
Vol 924 (1) ◽  
pp. 38
Author(s):  
Takami Kuroda ◽  
Tobias Fischer ◽  
Tomoya Takiwaki ◽  
Kei Kotake

Abstract We investigate observable signatures of a first-order quantum chromodynamics (QCD) phase transition in the context of core-collapse supernovae. To this end, we conduct axially symmetric numerical relativity simulations with multi-energy neutrino transport, using a hadron–quark hybrid equation of state (EOS). We consider four nonrotating progenitor models, whose masses range from 9.6 to 70 M ⊙. We find that the two less-massive progenitor stars (9.6 and 11.2 M ⊙) show a successful explosion, which is driven by the neutrino heating. They do not undergo the QCD phase transition and leave behind a neutron star. As for the more massive progenitor stars (50 and 70 M ⊙), the proto-neutron star (PNS) core enters the phase transition region and experiences the second collapse. Because of a sudden stiffening of the EOS entering to the pure quark matter regime, a strong shock wave is formed and blows off the PNS envelope in the 50 M ⊙ model. Consequently the remnant becomes a quark core surrounded by hadronic matter, leading to the formation of the hybrid star. However, for the 70 M ⊙ model, the shock wave cannot overcome the continuous mass accretion and it readily becomes a black hole. We find that the neutrino and gravitational wave (GW) signals from supernova explosions driven by the hadron–quark phase transition are detectable for the present generation of neutrino and GW detectors. Furthermore, the analysis of the GW detector response reveals unique kHz signatures, which will allow us to distinguish this class of supernova explosions from failed and neutrino-driven explosions.


1998 ◽  
Vol 493 (2) ◽  
pp. 848-862 ◽  
Author(s):  
A. Mezzacappa ◽  
A. C. Calder ◽  
S. W. Bruenn ◽  
J. M. Blondin ◽  
M. W. Guidry ◽  
...  

2012 ◽  
Vol 751 (1) ◽  
pp. 26 ◽  
Author(s):  
Eirik Endeve ◽  
Christian Y. Cardall ◽  
Reuben D. Budiardja ◽  
Samuel W. Beck ◽  
Alborz Bejnood ◽  
...  

2017 ◽  
Vol 96 (4) ◽  
Author(s):  
Giovanni Camelio ◽  
Alessandro Lovato ◽  
Leonardo Gualtieri ◽  
Omar Benhar ◽  
José A. Pons ◽  
...  

2017 ◽  
Vol 12 (S331) ◽  
pp. 329-338
Author(s):  
Kei Kotake ◽  
Takami Kuroda ◽  
Kazuhiro Hayama

AbstractIn this contribution, we present results from fully general-relativistic three-dimensional (3D) simulations of a non-rotating 15M⊙ star using different nuclear equations of state (EOSs). We show that the SASI (standing-accretion-shock-instability) activity occurs much more vigorously in models with softer EOS. By performing detailed analysis of the gravitational-wave (GW) emission, we find a new GW signature that is produced predominantly by the SASI-induced downflows to the proto-neutron star. We discuss the detectability of the GW signal by performing a coherent network analysis where multiple detectors including LIGO Hanford, LIGO Livingston, VIRGO, and KAGRA are considered. We point out that the GW signal, whose typical frequency is in the best sensitivity range of the laser-interferometers, could potentially provide the live broadcast that pictures how the supernova shock is dancing in the core. The detection horizon of the signal is estimated as 2~3 kpc for the current generation detectors, which can extend up to ~100 kpc for the third generation detectors like Cosmic Explorer. We furthermore perform a correlation analysis between the SASI-modulated GW and neutrino signals. Our results show that the time correlation of the two signals becomes highest when we take into account the travel timescale of adverting material from the (average) neutrino-sphere to the proto-neutron star surface.


2019 ◽  
Vol 489 (2) ◽  
pp. 2227-2246 ◽  
Author(s):  
David Vartanyan ◽  
Adam Burrows ◽  
David Radice

Abstract We provide the time series and angular distributions of the neutrino and gravitational wave emissions of 11 state-of-the-art 3D non-rotating core-collapse supernova models and explore correlations between these signatures and the real-time dynamics of the shock and the proto-neutron star (PNS) core. The neutrino emissions are roughly isotropic on average, with instantaneous excursions about the mean inferred luminosity of as much as ±20 per cent. The deviation from isotropy is least for the ‘νμ’-type neutrinos and the lowest mass progenitors. Instantaneous temporal luminosity variations along a given direction for exploding models average ∼2–4 per cent, but can be as high as ∼10 per cent. For non-exploding models, they can achieve ∼25 per cent. The temporal variations in the neutrino emissions correlate with the temporal and angular variations in the mass accretion rate. We witness the lepton-number emission self-sustained asymmetry (LESA) phenomenon in all our models and find that the vector direction of the LESA dipole and that of the inner Ye distribution are highly correlated. For our entire set of 3D models, we find strong connections between the cumulative neutrino energy losses, the radius of the proto-neutron star, and the f-mode frequency of the gravitational wave emissions. When physically normalized, the progenitor-to-progenitor variation in any of these quantities is no more than ∼10 per cent. Moreover, the reduced f-mode frequency is independent of time after bounce to better than ∼10 per cent. Therefore, simultaneous measurement of gravitational waves and neutrinos from a given supernova event can be used synergistically to extract real physical quantities of the supernova core.


Sign in / Sign up

Export Citation Format

Share Document