scholarly journals Constraining the Properties of SNe Ia Progenitors from Light Curves

2011 ◽  
Vol 7 (S281) ◽  
pp. 309-313 ◽  
Author(s):  
B. Sadler ◽  
Peter Hoeflich ◽  
E. Baron ◽  
K. Krisciunas ◽  
G. Folatelli ◽  
...  

AbstractWe present an analysis of high precision V light curves (LC) for 18 local Type Ia supernovae (SNe Ia) as obtained with the same telescope and setup at the Las Campanas Observatory (LCO). This homogeneity provides an intrinsic accuracy of a few hundredths of a magnitude with respect to individual LCs and between different objects. Based on the single degenerate (SD) scenario, we identify patterns which have been predicted by model calculations as signatures of the progenitor and accretion rate which change the explosion energy and the amount of electron capture, respectively. Using these templates as principle components and the overdetermined system of SNe pairs, we reconstruct the properties of progenitors and progenitor systems. All LCO SNe Ia follow the brightness decline relation except 2001ay. After subtraction of the two components, the remaining scatter is reduced to ≈0.01m−0.03m. SNe Ia seem to originate from progenitors with main-sequence masses MMS > 3 M⊙ with the exception of two subluminous SNe Ia with MMS < 2 M⊙. The component analysis indicates a wide range of accretion rates in the progenitor systems closing the gap to accretion induced collapses (AIC). SN1991t-like objects show differences in decline rate (dm15) but no tracers of our secondary parameters. This may point to a different origin such as the double degenerate or pulsating delayed detonation scenarios. SN2001ay does not follow the decline relation. It can be understood in the framework of C-rich white dwarfs (WDs), and this group may produce an anti-Phillips relation. We suggest that this may be a result of a common envelope phase and mixing during central He burning as in SN1987A.

2018 ◽  
Vol 619 ◽  
pp. A53 ◽  
Author(s):  
S. Toonen ◽  
H. B. Perets ◽  
A. P. Igoshev ◽  
E. Michaely ◽  
Y. Zenati

Context. The mergers of neutron stars (NSs) and white dwarfs (WDs) could give rise to explosive transients, potentially observable with current and future transient surveys. However, the expected properties and distribution of such events is not well understood. Aims. Here we characterise the rates of such events, their delay-time distributions, their progenitors, and the distribution of their properties. Methods. We use binary population synthesis models and consider a wide range of initial conditions and physical processes. In particular we consider different common-envelope evolution models and different NS natal kick distributions. We provide detailed predictions arising from each of the models considered. Results. We find that the majority of NS–WD mergers are born in systems in which mass-transfer played an important role, and the WD formed before the NS. For the majority of the mergers the WDs have a carbon-oxygen composition (60−80%) and most of the rest are with oxygen-neon WDs. The time-integrated rates of NS–WD mergers are in the range of 3−15% of the type Ia supernovae (SNe) rate. Their delay-time distribution is very similar to that of type Ia SNe, but is slightly biased towards earlier times. They typically explode in young 100 Myr < τ < 1 Gyr environments, but have a tail distribution extending to long, gigayear-timescales. Models including significant kicks give rise to relatively wide offset distribution extending to hundreds of kiloparsecs. Conclusions. The demographic and physical properties of NS–WD mergers suggest they are likely to be peculiar type Ic-like SNe, mostly exploding in late-type galaxies. Their overall properties could be related to a class of recently observed rapidly evolving SNe, while they are less likely to be related to the class of Ca-rich SNe.


2009 ◽  
Vol 5 (S262) ◽  
pp. 358-361
Author(s):  
Yutaka Ihara ◽  
Mamoru Doi ◽  
Tomoki Morokuma ◽  
Raynald Pain ◽  
Naohiro Takanashi ◽  
...  

AbstractWe present a measurement of the rate of high-z Type Ia supernovae (SNe Ia) using multi-epoch observations of Subaru/XMM-Newton Deep Field (SXDF) with Suprime-Cam on the Subaru Telescope. Although SNe Ia are regarded as a standard candle, progenitor systems of SNe Ia have not been resolved yet. One of the key parameters to show the progenitor systems by observations is the delay time distribution between the binary system formation and subsequent SN explosion. Recently, a wide range of delay time is studied by SN Ia rates compared with an assumed cosmic star formation history. If SNe Ia with short delay time are dominant, the cosmic SN Ia rate evolution should closely trace that of the cosmic star formation. In order to detect a lot of high-z SNe Ia and measure SN Ia rates, we repeatedly carried out wide and deep imaging observations in the í-band with Suprime-Cam in 2002 (FoV~1 deg2, mi < 25.5 mag). We obtained detailed light curves of the variable objects, and 50 objects are classified as SNe Ia using the light curve fitting method at the redshift range of 0.2 < z < 1.3. In order to check the completeness and contamination of the light curve classification method, we performed Monte Carlo simulations and generated ~100,000 light curves of SNe Ia and II from templates. The control time and detection efficiency of the SN survey are also calculated using the artificial light curves. We derived an increasing trend of rates at around z ~ 1.2. Our results are almost consistent with other SN Ia rate results from low-z to high-z. Our results are the first results of high-z SN Ia rates with large statistics using light curves obtained by ground based telescopes, and give us visions of the SN rate studies for the future.


1994 ◽  
Vol 147 ◽  
pp. 186-213
Author(s):  
J. Isern ◽  
R. Canal

AbstractIn this paper we review the behavior of growing stellar degenerate cores. It is shown that ONeMg white dwarfs and cold CO white dwarfs can collapse to form a neutron star. This collapse is completely silent since the total amount of radioactive elements that are expelled is very small and a burst of γ-rays is never produced. In the case of an explosion (always carbonoxygen cores), the outcome fits quite well the observed properties of Type Ia supernovae. Nevertheless, the light curves and the velocities measured at maximum are very homogeneous and the diversity introduced by igniting at different densities is not enough to account for the most extreme cases observed. It is also shown that a promising way out of this problem could be the He-induced detonation of white dwarfs with different masses. Finally, we outline that the location of the border line which separetes explosion from collapse strongly depends on the input physics adopted.


2011 ◽  
Vol 7 (S281) ◽  
pp. 205-208
Author(s):  
Bo Wang ◽  
Zhanwen Han

AbstractEmploying Eggleton's stellar evolution code and assuming optically thick winds, we systematically studied the He star donor channel of Type Ia supernovae (SNe Ia), in which a carbon-oxygen white dwarf (WD) accretes material from a He main-sequence star or a He subgiant to increase its mass to the Chandrasekhar mass. We mapped out the initial parameters for producing SNe Ia in the orbital period–secondary mass plane for various WD masses from this channel. Based on a detailed binary population synthesis approach, we find that this channel can produce SNe Ia with short delay times (~100 Myr) implied by recent observations. We derived many properties of the surviving companions of this channel after SN explosion, which can be tested by future observations. We also find that the surviving companions from the SN explosion scenario have a high spatial velocity (>400 km/s), which could be an alternative origin for hypervelocity stars (HVSs), especially for HVSs such as US 708.


2020 ◽  
Vol 493 (4) ◽  
pp. 5617-5624
Author(s):  
Doron Kushnir ◽  
Eli Waxman

ABSTRACT The finite time, τdep, over which positrons from β+ decays of 56Co deposit energy in type Ia supernovae ejecta lead, in case the positrons are trapped, to a slower decay of the bolometric luminosity compared to an exponential decline. Significant light-curve flattening is obtained when the ejecta density drops below the value for which τdep equals the 56Co lifetime. We provide a simple method to accurately describe this ‘delayed deposition’ effect, which is straightforward to use for analysis of observed light curves. We find that the ejecta heating is dominated by delayed deposition typically from 600 to 1200 d, and only later by longer lived isotopes 57Co and 55Fe decay (assuming solar abundance). For the relatively narrow 56Ni velocity distributions of commonly studied explosion models, the modification of the light curve depends mainly on the 56Ni mass-weighted average density, 〈ρ〉t3. Accurate late-time bolometric light curves, which may be obtained with JWST far-infrared (far-IR) measurements, will thus enable to discriminate between explosion models by determining 〈ρ〉t3 (and the 57Co and 55Fe abundances). The flattening of light curves inferred from recent observations, which is uncertain due to the lack of far-IR data, is readily explained by delayed deposition in models with $\langle \rho \rangle t^{3} \approx 0.2\, \mathrm{M}_{\odot }\, (10^{4}\, \textrm{km}\, \textrm{s}^{-1})^{-3}$, and does not imply supersolar 57Co and 55Fe abundances.


2020 ◽  
Vol 497 (2) ◽  
pp. 1895-1903 ◽  
Author(s):  
E C Wilson ◽  
J Nordhaus

ABSTRACT The formation channels and predicted populations of double white dwarfs (DWDs) are important because a subset will evolve to be gravitational-wave sources and/or progenitors of Type Ia supernovae. Given the observed population of short-period DWDs, we calculate the outcomes of common envelope (CE) evolution when convective effects are included. For each observed white dwarf (WD) in a DWD system, we identify all progenitor stars with an equivalent proto-WD core mass from a comprehensive suite of stellar evolution models. With the second observed WD as the companion, we calculate the conditions under which convection can accommodate the energy released as the orbit decays, including (if necessary) how much the envelope must spin-up during the CE phase. The predicted post-CE final separations closely track the observed DWD orbital parameter space, further strengthening the view that convection is a key ingredient in CE evolution.


2020 ◽  
Vol 497 (3) ◽  
pp. 2974-2991
Author(s):  
Marcelo Vargas dos Santos ◽  
Miguel Quartin ◽  
Ribamar R R Reis

ABSTRACT The efficient classification of different types of supernovae is one of the most important problems for observational cosmology. However, spectroscopic confirmation of most objects in upcoming photometric surveys, such as the the Rubin Observatory Legacy Survey of Space and Time, will be unfeasible. The development of automated classification processes based on photometry has thus become crucial. In this paper, we investigate the performance of machine learning (ML) classification on the final cosmological constraints using simulated light-curves from the Supernova Photometric Classification Challenge, released in 2010. We study the use of different feature sets for the light-curves and many different ML pipelines based on either decision-tree ensembles or automated search processes. To construct the final catalogues we propose a threshold selection method, by employing a bias-variance tradeoff. This is a very robust and efficient way to minimize the mean squared error. With this method, we were able to obtain very strong cosmological constraints, which allowed us to keep $\sim 75{{\ \rm per\ cent}}$ of the total information in the Type Ia supernovae when using the SALT2 feature set, and $\sim 33{{\ \rm per\ cent}}$ for the other cases (based either on the Newling model or on standard wavelet decomposition).


Sign in / Sign up

Export Citation Format

Share Document