scholarly journals Cosmological Evolution of Supermassive Black Holes: Mass Functions and Spins

2012 ◽  
Vol 8 (S290) ◽  
pp. 259-260 ◽  
Author(s):  
Yan-Rong Li ◽  
Jian-Min Wang ◽  
Luis C. Ho

AbstractWe derive the mass function of supermassive black holes (SMBHs) over the redshift range 0 > z ≲ 2, using the latest deep luminosity and mass functions of field galaxies. Applying this mass function, combined with the bolometric luminosity function of active galactic nuclei (AGNs), into the the continuity equation of SMBH number density, we explicitly obtain the mass-dependent cosmological evolution of the radiative efficiency for accretion. We suggest that the accretion history of SMBHs and their spins evolve in two distinct regimes: an early phase of prolonged accretion, plausibly driven by major mergers, during which the black hole spins up, then switching to a period of random, episodic accretion, governed by minor mergers and internal secular processes, during which the hole spins down. The transition epoch depends on mass, mirroring other evidence for “cosmic downsizing” in the AGN population.

2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
Brandon C. Kelly ◽  
Andrea Merloni

The black hole mass function of supermassive black holes describes the evolution of the distribution of black hole mass. It is one of the primary empirical tools available for mapping the growth of supermassive black holes and for constraining theoretical models of their evolution. In this paper, we discuss methods for estimating the black hole mass function, including their advantages and disadvantages. We also review the results of using these methods for estimating the mass function of both active and inactive black holes. In addition, we review current theoretical models for the growth of supermassive black holes that predict the black hole mass function. We conclude with a discussion of directions for future research which will lead to improvement in both empirical and theoretical determinations of the mass function of supermassive black holes.


2006 ◽  
Vol 459 (1) ◽  
pp. 43-54 ◽  
Author(s):  
L. Miller ◽  
W. J. Percival ◽  
S. M. Croom ◽  
A. Babić

1999 ◽  
Vol 186 ◽  
pp. 307-310
Author(s):  
Y. Taniguchi ◽  
Y. Shioya ◽  
T. Murayama ◽  
K. Wada

A unified formation mechanism of nuclear starbursts is presented; all the nuclear starbursts are triggered by binary supermassive black holes made in the final phase of galaxy mergers. Minor mergers cause both nuclear starbursts and hot-spot nuclei while major mergers cause (ultra) luminous infrared galaxies. We discuss the case of Arp 220 in detail.


2020 ◽  
Vol 495 (4) ◽  
pp. 4681-4706 ◽  
Author(s):  
David Izquierdo-Villalba ◽  
Silvia Bonoli ◽  
Massimo Dotti ◽  
Alberto Sesana ◽  
Yetli Rosas-Guevara ◽  
...  

ABSTRACT We study the mass assembly and spin evolution of supermassive black holes (BHs) across cosmic time as well as the impact of gravitational recoil on the population of nuclear and wandering BHs (wBHs) by using the semi-analytical model L-Galaxies run on top of Millennium merger trees. We track spin changes that BHs experience during both coalescence events and gas accretion phases. For the latter, we assume that spin changes are coupled with the bulge assembly. This assumption leads to predictions for the median spin values of z = 0 BHs that depend on whether they are hosted by pseudo-bulges, classical bulges or ellipticals, being $\overline{a} \sim 0.9$, 0.7 and 0.4, respectively. The outcomes of the model display a good consistency with $z \le 4$ quasar luminosity functions and the $z = 0$ BH mass function, spin values, and BH correlation. Regarding the wBHs, we assume that they can originate from both the disruption of satellite galaxies (orphan wBH) and ejections due to gravitational recoils (ejected wBH). The model points to a number density of wBHs that increases with decreasing redshift, although this population is always $\rm {\sim}2\, dex$ smaller than the one of nuclear BHs. At all redshifts, wBHs are typically hosted in $\rm {\it M}_{halo} \gtrsim 10^{13} \, M_{\odot }$ and $\rm {\it M}_{stellar} \gtrsim 10^{10} \, M_{\odot }$, being orphan wBHs the dominant type. Besides, independently of redshift and halo mass, ejected wBHs inhabit the central regions (${\lesssim}\rm 0.3{\it R}_{200}$) of the host DM halo, while orphan wBH linger at larger scales (${\gtrsim}\rm 0.5{\it R}_{200}$). Finally, we find that gravitational recoils cause a progressive depletion of nuclear BHs with decreasing redshift and stellar mass. Moreover, ejection events lead to changes in the predicted local BH–bulge relation, in particular for BHs in pseudo-bulges, for which the relation is flattened at $\rm {\it M}_{bulge} \gt 10^{10.2}\, M_{\odot }$ and the scatter increase up to ${\sim}\rm 3\, dex$.


Sign in / Sign up

Export Citation Format

Share Document